Evaluation of reticulorumen temperature boluses for the diagnosis of subclinical cases of bovine respiratory disease in feedlot cattle

Author(s):  
Emilie A-L Flattot ◽  
Tony R Batterham ◽  
Edouard Timsit ◽  
Brad J White ◽  
Joe P McMeniman ◽  
...  

Abstract Bovine respiratory disease (BRD) is the most important and costly health issue of the feedlot industry worldwide. Remote monitoring of reticulorumen temperature has been suggested as a potential tool to improve the diagnostic accuracy of BRD. The present study aimed to evaluate 1) the difference and degree of reticulorumen hyperthermia episodes between healthy and subclinical BRD feedlot steers, 2) determine the correlation between reticulorumen hyperthermia and lung pathology, performance, and carcass traits. Mixed-breed feedlot steers (n= 148) with a mean arrival weight of 321 ± 3.34 kg were administered a reticulorumen bolus at feedlot entry and monitored for visual and audible signs of BRD until slaughter when lungs were examined and scored for lesions indicative of BRD. Post-slaughter animals with no record of BRD treatment were assigned to one of three case definitions. Healthy steers had no visual or audible signs of BRD (i.e., CIS=1), and total lung consolidation score < 5% or pleurisy score < 3 at slaughter. Subclinical BRD cases had a CIS of 1, and a lung consolidation score ≥ 5% or a pleurisy score of 3 at slaughter. Mild CIS cases had at least one CIS of 2, and a lung consolidation score < 5% and a pleurisy score < 3 at slaughter. Subclinical BRD and mild CIS cases had longer total duration of reticulorumen hyperthermia, more episodes and longer average episode duration above 40.0°C compared to healthy steers (P < 0.05). A moderate positive correlation was found between lung consolidation and total duration (r = 0.27, P < 0.001), episode duration (r = 0.29, P < 0.001) and number of episodes (r = 0.20, P < 0.05). Pleurisy score was also found to be moderately and positively correlated with total duration (r = 0.23, P < 0.01), episode duration (r = 0.37, P < 0.001) and number of episodes (r = 0.26, P < 0.01). Moderate negative correlations were found between reticulorumen hyperthermia and carcass traits including hot standard carcass weight (HSCW) (- 0.22 ≤ r ≤ - 0.23, P < 0.05) and P8-fat depth (- 0.18 ≤ r ≤ - 0.32, P < 0.05). Subclinical BRD reduced carcass weight by 22 kg and average daily gain (ADG) by 0.44 kg/day compared to healthy steers (P < 0.05), but mild CIS cases had no effect on performance (P > 0.05). The reticulorumen bolus technology appears promising for detection of subclinical BRD cases in feedlot cattle as defined by lung pathology at slaughter.

2020 ◽  
Vol 98 (2) ◽  
Author(s):  
Claudia Blakebrough-Hall ◽  
Joe P McMeniman ◽  
Luciano A González

Abstract Bovine respiratory disease (BRD) causes significant economic losses to the feedlot industry due to decreased production and increased costs associated with treatment. This study aimed to assess the impacts of BRD on performance, carcass traits, and economic outcomes defined using four BRD diagnosis methods: number of BRD treatments an animal received, pleural lesions at slaughter, lung lesions at slaughter, and clinical BRD status defined using both treatment records and lung and pleural lesions. Crossbred steers (n = 898), with an initial body weight of 432 kg (± SD 51), were followed from feedlot entry to slaughter. Veterinary treatment records were collected and lungs scored at slaughter for lesions indicative of BRD. There was an 18% morbidity rate and a 2.1% BRD mortality rate, with an average net loss of AUD$1,647.53 per BRD mortality. Animals treated ≥3 times for BRD had 39.6 kg lighter carcasses at slaughter and returned an average of AUD$384.97 less compared to animals never treated for BRD (P < 0.001). Animals with severe lung lesions at slaughter grew 0.3 kg/d less, had 14.3 kg lighter carcasses at slaughter, and returned AUD$91.50 less than animals with no lung lesions (P < 0.001). Animals with subclinical and clinical BRD had 16.0 kg and 24.1 kg lighter carcasses, respectively, and returned AUD$67.10 and AUD$213.90 less at slaughter, respectively, compared to healthy animals that were never treated with no lesions (P < 0.001). The severity of BRD based on the number of treatments an animal received and the severity of lung and pleural lesions reduced animal performance, carcass weight and quality, and economic returns. Subclinical BRD reduced animal performance and economic returns compared to healthy animals; however, subclinical animals still had greater performance than animals with clinical BRD. This information can be used to plan for strategic investments aimed at reducing the impacts of BRD in feedlot cattle such as improved detection methods for subclinical animals with lesions at slaughter and BRD treatment protocols.


2010 ◽  
Vol 88 (4) ◽  
pp. 1220-1228 ◽  
Author(s):  
M. J. Schneider ◽  
R. G. Tait ◽  
M. V. Ruble ◽  
W. D. Busby ◽  
J. M. Reecy

ABSTRACT The primary objective of this study was to estimate variance components and heritability of bovine respiratory disease (BRD) incidence in beef calves before weaning and during the finishing phase. The second objective was to investigate the impact of BRD incidence and treatment frequency on performance and carcass traits. Bovine respiratory disease is the biggest and most costly health challenge facing the cattle industry. The 2 populations used consisted of 1,519 preweaned calves and 3,277 head of feedlot cattle. The incidence rate of BRD in preweaned calves was 11.39%, and among treated cattle, 82.1% were treated once, 13.9% were treated twice, and 4.0% were treated 3 times or more. The incidence of BRD (P = 0.35) and the number of treatments (P = 0.77) had no significant effect on weaning BW. Heritability estimates of the entire preweaned population for BRD resistance and number of treatments were 0.11 ± 0.06 and 0.08 ± 0.05, respectively. The genetic correlation estimates for BRD incidence with weaning BW and birth BW were low (−0.02 ± 0.32 and 0.07 ± 0.27, respectively). The same estimate for the number of BRD treatments with weaning BW and birth BW was 0.25 ± 0.35 and 0.30 ± 0.27, respectively. The observed BRD incidence rate for feedlot cattle was observed at 9.43%. Incidence of BRD significantly (P < 0.01) decreased overall and acclimation ADG by 0.06 ± 0.01 kg/d and 0.28 ± 0.03 kg/d, respectively. Carcass traits were also significantly (P < 0.05) affected by BRD incidence; untreated cattle had a 9.1 ± 1.7-kg heavier HCW. Results were similar in the analysis of treatment frequency. The heritability estimate of BRD incidence and the number of treatments were 0.07 ± 0.04 and 0.02 ± 0.03, respectively. Estimates of genetic correlations of BRD incidence with production traits were −0.63 ± 0.22 for acclimation ADG, −0.04 ± 0.23 for on-test ADG, −0.31 ± 0.21 for overall ADG, −0.39 ± 0.21 for final BW, −0.22 ± 0.22 for HCW, −0.03 ± 0.22 for LM area, 0.24 ± 0.25 for fat, and −0.43 ± 0.20 for marbling score. Similar results for the number of treatments and production traits were −1.00 ± 0.68 for acclimation ADG, −0.04 ± 0.39 for on-test ADG, −0.47 ± 0.41 for overall ADG, −0.66 ± 0.40 for final BW, −0.58 ± 0.45 for HCW, −0.12 ± 0.38 for LM area, 0.42 ± 0.50 for fat, and −0.32 ± 0.37 for marbling score. Because of the high economic cost associated with BRD incidence, even these modest estimates for heritability of BRD resistance should be considered for incorporation into beef cattle breeding programs.


2019 ◽  
Vol 97 (11) ◽  
pp. 4405-4417 ◽  
Author(s):  
David N Kelly ◽  
Craig Murphy ◽  
Roy D Sleator ◽  
Michelle M Judge ◽  
Stephen B Conroy ◽  
...  

Abstract Some definitions of feed efficiency such as residual energy intake (REI) and residual gain (RG) may not truly reflect production efficiency. The energy sinks used in the derivation of the traits include metabolic live-weight; producers finishing cattle for slaughter are, however, paid on the basis of carcass weight, as opposed to live-weight. The objective of the present study was to explore alternative definitions of REI and RG which are more reflective of production efficiency, and quantify their relationship with performance, ultrasound, and carcass traits across multiple breeds and sexes of cattle. Feed intake and live-weight records were available on 5,172 growing animals, 2,187 of which also had information relating to carcass traits; all animals were fed a concentrate-based diet representative of a feedlot diet. Animal linear mixed models were used to estimate (co)variance components. Heritability estimates for all derived REI traits varied from 0.36 (REICWF; REI using carcass weight and carcass fat as energy sinks) to 0.50 (traditional REI derived with the energy sinks of both live-weight and ADG). The heritability for the RG traits varied from 0.24 to 0.34. Phenotypic correlations among all definitions of the REI traits ranged from 0.90 (REI with REICWF) to 0.99 (traditional REI with REI using metabolic preslaughter live-weight and ADG). All were different (P < 0.001) from one suggesting reranking of animals when using different definitions of REI to identify efficient cattle. The derived RG traits were either weakly or not correlated (P > 0.05) with the ultrasound and carcass traits. Genetic correlations between the REI traits with carcass weight, dressing difference (i.e., live-weight immediately preslaughter minus carcass weight) and dressing percentage (i.e., carcass weight divided by live-weight immediately preslaughter) implies that selection on any of the REI traits will increase carcass weight, lower the dressing difference and increase dressing percentage. Selection on REICW (REI using carcass weight as an energy sink), as opposed to traditional REI, should increase the carcass weight 2.2 times slower but reduce the dressing difference 4.3 times faster. While traditionally defined REI is informative from a research perspective, the ability to convert energy into live-weight gain does not necessarily equate to carcass gain, and as such, traits such as REICW and REICWF provide a better description of production efficiency for feedlot cattle.


2019 ◽  
Vol 20 (2) ◽  
pp. 163-181
Author(s):  
A. M. O'Connor ◽  
D. Hu ◽  
S. C. Totton ◽  
N. Scott ◽  
C. B. Winder ◽  
...  

AbstractWe conducted a systematic review and network meta-analysis to determine the comparative efficacy of antibiotics used to control bovine respiratory disease (BRD) in beef cattle on feedlots. The information sources for the review were: MEDLINE®, MEDLINE In-Process and MEDLINE® Daily, AGRICOLA, Epub Ahead of Print, Cambridge Agricultural and Biological Index, Science Citation Index, Conference Proceedings Citation Index – Science, the Proceedings of the American Association of Bovine Practitioners, World Buiatrics Conference, and the United States Food and Drug Administration Freedom of Information New Animal Drug Applications summaries. The eligible population was weaned beef cattle raised in intensive systems. The interventions of interest were injectable antibiotics used at the time the cattle arrived at the feedlot. The outcome of interest was the diagnosis of BRD within 45 days of arrival at the feedlot. The network meta-analysis included data from 46 studies and 167 study arms identified in the review. The results suggest that macrolides are the most effective antibiotics for the reduction of BRD incidence. Injectable oxytetracycline effectively controlled BRD compared with no antibiotics; however, it was less effective than macrolide treatment. Because oxytetracycline is already commonly used to prevent, control, and treat BRD in groups of feedlot cattle, the use of injectable oxytetracycline for BRD control might have advantages from an antibiotic stewardship perspective.


2005 ◽  
Vol 85 (4) ◽  
pp. 463-473 ◽  
Author(s):  
R. Bergen ◽  
S. P. Miller ◽  
J. W. Wilton

Genetic correlations were examined among 10 live growth and ultrasound traits measured in yearling beef bulls (n = 2172) and four carcass traits measured in crossbred finished feedlot steers (n = 1031). Heritabilities ranged from 0.13 (bull ultrasound longissimus muscle width) to 0.83 (yearling bull hip height). Genetic correlations indicated that selecting yearling bulls for increased growth rate and hip height would lead to higher carcass weight, increased longissimus muscle area and reduced levels of carcass marbling in steers. Bull ultrasound fat depth was positively associated with both carcass fat depth and marbling score. Most ultrasound longissimus muscle size measurements in bulls were positively associated with each other and with carcass longissimus muscle area in steers, but the magnitude of the genetic correlation with carcass measurements depended on the bull longissimus muscle size trait in question. This suggests that longissimus muscle shape in bulls may be related to carcass weight, fat and muscle traits in steers. Results confirm that while ultrasound is a valuable tool for the genetic improvement of carcass traits in beef cattle, genetic correlations between live bull ultrasound and steer carcass traits less then unity suggest that selection would benefit from multiple trait evaluations in situations where reliable carcass data are available. Key words: Ultrasound, beef carcass, heritability, genetic correlation


Sign in / Sign up

Export Citation Format

Share Document