scholarly journals Transcriptome and Gene Expression Analysis of Cylas formicarius (Coleoptera: Brentidae) During Different Development Stages

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Juan Ma ◽  
Rongyan Wang ◽  
Xiuhua Li ◽  
Bo Gao ◽  
Shulong Chen

Abstract The sweet potato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), is an important pest of sweet potato worldwide. However, there is limited knowledge on the molecular mechanisms underlying growth and differentiation of C. formicarius. The transcriptomes of the eggs, second instar larvae, third instar larvae (L3), pupae, females, and males of C. formicarius were sequenced using Illumina sequencing technology for obtaining global insights into developing transcriptome characteristics and elucidating the relative functional genes. A total of 54,255,544 high-quality reads were produced, trimmed, and de novo assembled into 115,281 contigs. 61,686 unigenes were obtained, with an average length of 1,009 nt. Among these unigenes, 17,348 were annotated into 59 Gene Ontology (GO) terms and 12,660 were assigned to 25 Cluster of Orthologous Groups classes, whereas 24,796 unigenes were mapped to 258 pathways. Differentially expressed unigenes between various developmental stages of C. formicarius were detected. Higher numbers of differentially expressed genes (DEGs) were recorded in the eggs versus L3 and eggs versus male samples (2,141 and 2,058 unigenes, respectively) than the others. Genes preferentially expressed in each stage were also identified. GO and pathway-based enrichment analysis were used to further investigate the functions of the DEGs. In addition, the expression profiles of ten DEGs were validated by quantitative real-time PCR. The transcriptome profiles presented in this study and these DEGs detected by comparative analysis of different developed stages of C. formicarius will facilitate the understanding of the molecular mechanism of various living process and will contribute to further genome-wide research.

2018 ◽  
Vol 19 (10) ◽  
pp. 3071 ◽  
Author(s):  
Li Wang ◽  
Chengjiang Ruan ◽  
Lingyue Liu ◽  
Wei Du ◽  
Aomin Bao

Yellow horn (Xanthoceras sorbifolium Bunge) is an endemic oil-rich shrub that has been widely cultivated in northern China for bioactive oil production. However, little is known regarding the molecular mechanisms that contribute to oil content in yellow horn. Herein, we measured the oil contents of high- and low-oil yellow horn embryo tissues at four developmental stages and investigated the global gene expression profiles through RNA-seq. The results found that at 40, 54, 68, and 81 days after anthesis, a total of 762, 664, 599, and 124 genes, respectively, were significantly differentially expressed between the high- and low-oil lines. Gene ontology (GO) enrichment analysis revealed some critical GO terms related to oil accumulation, including acyl-[acyl-carrier-protein] desaturase activity, pyruvate kinase activity, acetyl-CoA carboxylase activity, and seed oil body biogenesis. The identified differentially expressed genes also included several transcription factors, such as, AP2-EREBP family members, B3 domain proteins and C2C2-Dof proteins. Several genes involved in fatty acid (FA) biosynthesis, glycolysis/gluconeogenesis, and pyruvate metabolism were also up-regulated in the high-oil line at different developmental stages. Our findings indicate that the higher oil accumulation in high-oil yellow horn could be mostly driven by increased FA biosynthesis and carbon supply, i.e. a source effect.


2019 ◽  
Vol 112 (6) ◽  
pp. 2966-2975 ◽  
Author(s):  
Qiong Yao ◽  
Yizhi Dong ◽  
Jing Chen ◽  
Linfa Quan ◽  
Wenqing Zhang ◽  
...  

Abstract Conopomorpha sinensis Bradley is the dominant borer pest of litchi and longan in the Asian-pacific area. Reduction or interference of reproduction and mating of adult moths is one of the most used strategies to control C. sinensis. Insect reproduction is a critical biological process closely related to endocrine control. Conopomorpha sinensis genome and transcriptome information is limited, hampering both our understanding of the molecular mechanisms underlying hormone activity and reproduction and the development of control strategies for this borer pest. To explore the sex differences in gene expression profiles influencing these biological processes, de novo transcriptomes were assembled from female and male adult C. sinensis specimens. This analysis yielded 184,422 unigenes with an average length of 903 bp and 405,961 transcripts after sequencing and assembly. About 45.06, 22.41, 19.53, 34.05, 35.82, 36.42, and 19.85% of the unigenes had significant matches in seven public databases. Subsequently, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed comprehensive information about the function of each gene and identified enriched categories and pathways that were associated with the 2,890 female-biased genes and 2,964 male-biased genes. In addition, we identified some important unigenes related to hormone activity and reproduction among the sex-differentially expressed genes (DEGs), including unigenes coding for ecdysone-induced protein 78C, juvenile hormone (JH)-regulated gene fatty acyl-CoA reductase, vitellogenin, etc. Our findings provide a more comprehensive portrait of the sex differences involved in the relationship of two important physiological features—hormone activity and reproduction in C. sinensis and members of the family Gracillariidae.


2020 ◽  
Author(s):  
Hui-Ming Li ◽  
Bi-Ze Yang ◽  
Xiu-Juan Zhang ◽  
Hai-Ying Jiang ◽  
Lin-Miao Li ◽  
...  

AbstractThe expression of hair features is an evolutionary adaptation resulting from interactions between many organisms and their environment. Elucidation of the mechanisms that underlie the expression of such traits is a topic in evolutionary biology research. Therefore, we assessed the de novo transcriptome of Atelerix albiventris at three developmental stages and compared gene expression profiles between abdomen hair and dorsal spine tissues. We identified 328,576 unigenes in our transcriptome, among which 3,598 were differentially expressed between hair- and spine-type tissues. Dorsal and abdomen skin tissues 5 days after birth were compared and the resulting differentially expressed genes were mainly enriched in keratin filament, epithelium cell differentiation, and epidermis development based on GO enrichment analysis, and tight junction, p53, and cell cycle signaling pathways based on KEGG enrichment analysis. Expression variations of MBP8, SFN, Wnt10, KRT1, and KRT2 may be the main factors regulating hair and spine differentiation for the hedgehog. Strikingly, DEGs in hair-type tissues were also significantly enriched in immune-related terms and pathways with hair-type tissues exhibiting more upregulated immune genes than spine-type tissues. Thus, we propose that spine development was an adaptation that provided protection against injuries or stress and reduced hedgehog vulnerability to infection.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 226
Author(s):  
Siying Fu ◽  
Yujie Duan ◽  
Siqi Wang ◽  
Yipeng Ren ◽  
Wenjun Bu

Riptortus pedestris (Hemiptera: Alydidae) is a major agricultural pest in East Asia that causes considerable economic losses to the soybean crop each year. However, the molecular mechanisms governing the growth and development of R. pedestris have not been fully elucidated. In this study, the Illumina HiSeq6000 platform was employed to perform de novo transcriptome assembly and determine the gene expression profiles of this species across all developmental stages, including eggs, first-, second-, third-, fourth-, and fifth-instar nymphs, and adults. In this study, a total of 60,058 unigenes were assembled from numerous raw reads, exhibiting an N50 length of 2126 bp and an average length of 1199 bp, and the unigenes were annotated and classified with various databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Furthermore, various numbers of differentially expressed genes (DEGs) were calculated through pairwise comparisons of all life stages, and some of these DEGs were associated with immunity, metabolism, and development by GO and KEGG enrichment. In addition, 35,158 simple sequence repeats (SSRs) and 715,604 potential single nucleotide polymorphisms (SNPs) were identified from the seven transcriptome libraries of R. pedestris. Finally, we identified and summarized ten wing formation-related signaling pathways, and the molecular properties and expression levels of five wing development-related genes were analyzed using quantitative real-time PCR for all developmental stages of R. pedestris. Taken together, the results of this study may establish a foundation for future research investigating developmental processes and wing formation in hemimetabolous insects and may provide valuable data for pest control efforts attempting to reduce the economic damage caused by this pest.


2021 ◽  
Author(s):  
Nana Yang ◽  
Qianghua Wang ◽  
Biao Ding ◽  
Yinging Gong ◽  
Yue Wu ◽  
...  

Abstract Background: The accumulation of ROS resulting from upregulated levels of oxidative stress is commonly implicated in preeclampsia (PE). Ferroptosis is a novel form of iron-dependent cell death instigated by lipid peroxidation likely plays important role in PE pathogenesis. This study aims to investigate expression profiles and functions of the ferroptosis-related genes (FRGs) in early- and late-onset preeclampsia.Methods: The gene expression data and clinical information were downloaded from GEO database. The “limma” R package was used for screening differentially expressed genes. GO(Gene Ontology), Kyoto Encyclopedia of Genes and Genomes(KEGG) and protein protein interaction (PPI) network analyses were conducted to investigate the bioinformatics functions and molecular interactions of significantly different FRGs. Quantitative real-time reverse transcriptase PCR was used to verify the expression of hub FRGs in PE.Results: A total number of 4,215 DEGs were identified between EOPE and preterm cases and 3,356 DEGs were found between EOPE and LOPE subtypes. 20 significantly different FRGs were identified in EOPE, while only 3 in LOPE. Functional enrichment analysis revealed that the differentially expressed FRGs was mainly involved in EOPE and enriched in hypoxia- and iron-related pathways, such as response to hypoxia, iron homeostasis and iron ion binding process. The PPI network analysis and verification by RT-qPCR resulted in the identification of the following six interesting FRGs: FTH1, HIF1A, FTL, IREB2, MAPK8 and PLIN2. Conclusions: EOPE and LOPE owned distinct underlying molecular mechanisms and ferroptosis may be mainly implicated in pathogenesis of EOPE. Further studies are necessary for deeper inquiry into placental ferroptosis and its role in the pathogenesis of EOPE.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Boyin Jia ◽  
Yuan Liu ◽  
Qining Li ◽  
Jiali Zhang ◽  
Chenxia Ge ◽  
...  

Studies of the gene and miRNA expression profiles associated with the postnatal late growth, development, and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq) analyses to determine the differentially expressed (DE) unigenes and miRNAs from skeletal muscle tissues at 1, 3, 5, and 10 years in sika deer. A total of 51,716 unigenes, 171 known miRNAs, and 60 novel miRNAs were identified based on four mRNA and small RNA libraries. A total of 2,044 unigenes and 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 1,946 unigenes and 4 miRNAs were differentially expressed between adult and adolescent sika deer, and 2,209 unigenes and 1 miRNAs were differentially expressed between aged and adult sika deer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DE unigenes and miRNA were mainly related to energy and substance metabolism, processes that are closely associate with the growth, development, and aging of skeletal muscle. We also constructed mRNA–mRNA and miRNA–mRNA interaction networks related to the growth, development, and aging of skeletal muscle. The results show that mRNA (Myh1, Myh2, Myh7, ACTN3, etc.) and miRNAs (miR-133a, miR-133c, miR-192, miR-151-3p, etc.) may play important roles in muscle growth and development, and mRNA (WWP1, DEK, UCP3, FUS, etc.) and miRNAs (miR-17-5p, miR-378b, miR-199a-5p, miR-7, etc.) may have key roles in muscle aging. In this study, we determined the dynamic miRNA and unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent miRNAs and unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth, and maintenance and will also provide valuable information for sika deer genetic breeding.


2021 ◽  
Author(s):  
Lei Shi ◽  
Yuan Shen ◽  
Yuhao Chi

Abstract Background Lonicera Japonica Thunb. is a perennial, semi-evergreen and twining vine in the family of Caprifoliaceae, which is widely cultivated in Asia. Thus far, L. japonica is often used to treat some human diseases including COVID-19, H1N1 influenza and hand-foot-and-mouth diseases, however, the regulatory mechanism of intrinsic physiological processes during different floral developmental stages of L. japonica remain largely unknown. Results The complete transcriptome of L. japonica was de novo-assembled and annotated, generating a total of 195850 unigenes, of which 84657 could be functionally annotated. 70 candidate genes involved in flowering transition were identified and the flowering regulatory network of five pathways was constructed in L. japonica. The mRNA transcripts of AGL24 and SOC1 exhibited a downward trend during flowering transition and followed by a gradual increase during the flower development. The transcripts of AP1 was only detected during the floral development, whereas the transcript level of FLC was high during the vegetative stages. The expression profiles of AGL24, SOC1, AP1 and FLC genes indicate that these key integrators might play the essential and evolutionarily conserved roles in control of flowering switch across the plant kingdom. We also identified 54 L. japonica genes encoding enzymes involved in terpenoid biosynthesis pathway. Most highly expressed genes centered on the MEP pathway, suggesting that this plastid pathway might represent the major pathway for terpenoid biosynthesis in L. japonica. In addition, 33 and 31 key genes encoding enzymes involved in the carotenogenesis and anthocyanin biosynthesis pathway were identified, respectively. PSY transcripts gradually increased during the flower development, supporting its role as the first rate-limiting enzyme in carotenoid skeleton production. The expression level of most anthocyanin biosynthetic genes was dramatically decreased during the flower developmental stages, consistent with the decline in the contents of anthocyanin. Conclusion These results identified a large number of potential key regulators controlling flowering time, flower color and floral scent formation in L. japonica, which improves our understanding of the molecular mechanisms underlying the flower traits and flower metabolism, as well as sets the groundwork for quality improvement and molecular breeding of L. japonica.


2021 ◽  
Author(s):  
Xinjian Li ◽  
Xuelei Han ◽  
Caixia Sun ◽  
Gaiying Li ◽  
Kejun Wang ◽  
...  

Abstract Background: Epidemic diseases cause great economic loss in pig farms each year, some of which are characterized mainly in spleen. Yorkshire pig is the most popular used first dam in the commercial pork production system. But the mRNA and lncRNA expression networks in developing Yorkshire pig spleens remain obscure. Results: Here, we profiled the systematic characters of mRNA and lncRNA repertoires in three groups of spleens from nine Yorkshire pigs, each three aged at 7 days, 90 days and 180 days. By using a precise mRNA and lncRNA identification pipeline, we identified 19,647 genes and 219 known and 3,219 putative lncRNA transcripts, 1,729 genes and 64 lncRNAs therein were found to express differentially in three groups. Gene expression characteristics of genes and lncRNAs were found to be basically fixed before 90 days after birth. Enrichment analysis of differentially expressed genes and potential target genes of differentially expressed lncRNAs both displayed crucial roles of up-regulation in immune activation and hematopoiesis and down-regulation in cell replication and division in 90 and 180 days compared to 7 days. The unregulated terms and their significance levels in 90 and 180 days both showed an extremely high degree of consistency. ENSSSCT00000001325 was the only lncRNA transcript that existed in three groups. CDK1, PCNA and PLK were detected to be hub genes that varied with age. BNIP3L, IL5, CD38 and TGFβ1 were found to be common top regulators from 7 to 90 and 180 days while ERAP1, NLRC5 and IL2RG were top regulators from 90 to 180 days.Conclusions: This study provided the first mRNA and lncRNA expression profiles in Yorkshire spleens at three developmental stages. We established gene expression modules and networks in the spleen of pigs from immune system initiation to adulthood. Our results are helpful for the study of transcriptome and functional genomics of spleen tissue in farm animals.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinsheng Xie ◽  
En ci Wang ◽  
Dandan Xu ◽  
Xiaolong Shu ◽  
Yu fei Zhao ◽  
...  

Objectives: Abdominal aortic aneurysms (AAAs) are associated with high mortality rates. The genes and pathways linked with AAA remain poorly understood. This study aimed to identify key differentially expressed genes (DEGs) linked to the progression of AAA using bioinformatics analysis.Methods: Gene expression profiles of the GSE47472 and GSE57691 datasets were acquired from the Gene Expression Omnibus (GEO) database. These datasets were merged and normalized using the “sva” R package, and DEGs were identified using the limma package in R. The functions of these DEGs were assessed using Cytoscape software. We analyzed the DEGs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Protein–protein interaction networks were assembled using Cytoscape, and crucial genes were identified using the Cytoscape plugin, molecular complex detection. Data from GSE15729 and GSE24342 were also extracted to verify our findings.Results: We found that 120 genes were differentially expressed in AAA. Genes associated with inflammatory responses and nuclear-transcribed mRNA catabolic process were clustered in two gene modules in AAA. The hub genes of the two modules were IL6, RPL21, and RPL7A. The expression levels of IL6 correlated positively with RPL7A and negatively with RPL21. The expression of RPL21 and RPL7A was downregulated, whereas that of IL6 was upregulated in AAA.Conclusions: The expression of RPL21 or RPL7A combined with IL6 has a diagnostic value for AAA. The novel DEGs and pathways identified herein might provide new insights into the underlying molecular mechanisms of AAA.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 301 ◽  
Author(s):  
Yongfu La ◽  
Xiaoyun He ◽  
Liping Zhang ◽  
Ran Di ◽  
Xiangyu Wang ◽  
...  

Photoperiod is one of the important factors leading to seasonal reproduction of sheep. However, the molecular mechanisms underlying the photoperiod regulation of seasonal reproduction remain poorly understood. In this study, we compared the expression profiles of mRNAs, lncRNAs, and circRNAs in uterine tissues from Sunite sheep during three different photoperiods, namely, the short photoperiod (SP), short transfer to long photoperiod (SLP), and long photoperiod (LP). The results showed that 298, 403, and 378 differentially expressed (DE) mRNAs, 171, 491, and 499 DE lncRNAs, and 124, 270, and 400 DE circRNAs were identified between SP and LP, between SP and SLP, and between LP and SLP, respectively. Furthermore, functional enrichment analysis showed that the differentially expressed RNAs were mainly involved in the GnRH signaling pathway, thyroid hormone synthesis, and thyroid hormone signaling pathway. In addition, co-expression networks of lncRNA–mRNA were constructed based on the correlation analysis between the differentially expressed RNAs. Our study provides new insights into the expression changes of RNAs in different photoperiods, which might contribute to understanding the molecular mechanisms of seasonal reproduction in sheep.


Sign in / Sign up

Export Citation Format

Share Document