scholarly journals Hysteresis modeling of impact dynamics using artificial neural network

2021 ◽  
Vol 37 ◽  
pp. 333-338
Author(s):  
T A Tabaza ◽  
O Tabaza ◽  
J Barrett ◽  
A Alsakarneh

Abstract In this paper, the process of training an artificial neural network (ANN) on predicting the hysteresis of a viscoelastic ball and ash wood bat colliding system is discussed. To study how the material properties and the impact speed affect the hysteresis phenomenon, many experiments were conducted for colliding three types of viscoelastic balls known as sliotars at two different speeds. The aim of the study is to innovate a neural network model to predict the hysteresis phenomenon of the collision of viscoelastic materials. The model accurately captured the input data and was able to produce data sets out of the input ranges. The results show that the ANN model predicted the impact hysteresis accurately with <1% error.

Author(s):  
Sobri Harun ◽  
Nor Irwan Ahmat Nor ◽  
Amir Hashim Mohd. Kassim

Permodelan bagi proses hidraulik dan hidrologi adalah penting apabila dilihat dari sudut kepelbagaian penggunaan sumber air seperti janakuasa hidroeletrik, pengairan, pengagihan bekalan air, dan kawalan banjir. Terdapat banyak kajian sebelum ini yang telah menggunakan kaedah rangkaian neural tiruan atau artificial neural network (ANN) untuk permodelan pelbagai perhubungan tak linear dan kompleks dalam proses hidrologi. Kaedah rangkaian neural tiruan ini telah diketahui bahawa ia merupakan suatu struktur matematik yang mudah ubah (flexible) dan berpotensi untuk menjana dan merumus set-set data masukan dan keluaran yang kurang tepat atau kabur dan tidak dihalusi dengan sempurna. Kawasan kajian adalah kawasan tadahan Sungai Lui (Selangor, Malaysia). Kertas Kerja ini mengutarakan cadangan menggunakan kaedah rangkaian neural tiruan ini bagi mendapatkan jumlah air larian permukaan harian dengan menggunakan hujan sebagai nod masukan kepada model berkenaan. Terdapat dua kaedah telah digunakan dalam pemilihan bilangan nod masukan iaitu seperti yang telah dicadangkan oleh [10] dan [5]. Seterusnya, hasil keputusan yang diperolehi daripada permodelan rangkaian neural tiruan ini dibandingkan dengan hasil keputusan yang diperolehi daripada model HEC-HMS. Didapati bahawa model rangkaian neural tiruan dapat menjana dan merumus perhubungan antara air larian permukaan dan curahan hujan lebih baik berbanding dengan model HEC-HMS. Kata kunci: hidrologi, rangkaian neural tiruan, hubungan air larian permukaan-curahan hujan The modelling of hydraulic and hydrological processes is important in view of the many uses of water resources such as hydropower generation, irrigation, water supply, and flood control. There are many previous works using the artificial neural network (ANN) method for modelling various complex non-linear relationships of hydrologic processes. The ANN is well known as a flexible mathematical structure and has the ability to generalize patterns in imprecise or noisy and ambiguous input and output data sets. The study area is Sungai Lui catchment (Selangor, Malaysia). This paper presents the proposed ANN model for prediction of daily runoff using the rainfall as input nodes. The method for selection of input nodes by [10] and [5] is applied. Further, the results are compared between ANN and HEC-HMS model. It has been found that the ANN models show a good generalization of rainfall-runoff relationship and is better than HEC-HMS model. Key words: hydrologic, artificial neural network, rainfall-runoff relationship


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Mohammad Alizadeh Mansouri ◽  
Rouzbeh Dabiri

AbstractSoil liquefaction is a phenomenon through which saturated soil completely loses its strength and hardness and behaves the same as a liquid due to the severe stress it entails. This stress can be caused by earthquakes or sudden changes in soil stress conditions. Many empirical approaches have been proposed for predicting the potential of liquefaction, each of which includes advantages and disadvantages. In this paper, a novel prediction approach is proposed based on an artificial neural network (ANN) to adequately predict the potential of liquefaction in a specific range of soil properties. To this end, a whole set of 100 soil data is collected to calculate the potential of liquefaction via empirical approaches in Tabriz, Iran. Then, the results of the empirical approaches are utilized for data training in an ANN, which is considered as an option to predict liquefaction for the first time in Tabriz. The achieved configuration of the ANN is utilized to predict the liquefaction of 10 other data sets for validation purposes. According to the obtained results, a well-trained ANN is capable of predicting the liquefaction potential through error values of less than 5%, which represents the reliability of the proposed approach.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3373
Author(s):  
Ludek Cicmanec

The main objective of this paper is to describe a building process of a model predicting the soil strength at unpaved airport surfaces (unpaved runways, safety areas in runway proximity, runway strips, and runway end safety areas). The reason for building this model is to partially substitute frequent and meticulous inspections of an airport movement area comprising the bearing strength evaluation and provide an efficient tool to organize surface maintenance. Since the process of building such a model is complex for a physical model, it is anticipated that it might be addressed by a statistical model instead. Therefore, fuzzy logic (FL) and artificial neural network (ANN) capabilities are investigated and compared with linear regression function (LRF). Large data sets comprising the bearing strength and meteorological characteristics are applied to train the likely model variations to be subsequently compared with the application of standard statistical quantitative parameters. All the models prove that the inclusion of antecedent soil strength as an additional model input has an immense impact on the increase in model accuracy. Although the M7 model out of the ANN group displays the best performance, the M3 model is considered for practical implications being less complicated and having fewer inputs. In general, both the ANN and FL models outperform the LRF models well in all the categories. The FL models perform almost equally as well as the ANN but with slightly decreased accuracy.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2021 ◽  
Vol 5 (2) ◽  
pp. 109-118
Author(s):  
Euis Saraswati ◽  
Yuyun Umaidah ◽  
Apriade Voutama

Coronavirus disease (Covid-19) or commonly called coronavirus. This virus spreads very quickly and even almost infects the whole world, including Indonesia. A large number of cases and the rapid spread of this virus make people worry and even fear the increasing spread of the Covid-19 virus. Information about this virus has also been spread on various social media, one of which is Twitter. Various public opinions regarding the Covid-19 virus are also widely expressed on Twitter. Opinions on a tweet contain positive or negative sentiments. Sentiments of sentiment contained in a tweet can be used as material for consideration and evaluation for the government in dealing with the Covid-19 virus. Based on these problems, a sentiment analysis classification is needed to find out public opinion on the Covid-19 virus. This research uses Artificial Neural Network (ANN) algorithm with the Backpropagation method. The results of this test get 88.62% accuracy, 91.5% precision, and 95.73% recall. The results obtained show that the ANN model is quite good for classifying text mining.


Author(s):  
Ana Maria Mihaela Gherman ◽  
Katalin Kovács ◽  
Mircea Vasile Cristea ◽  
Valer Tosa

In this work we present the results obtained with an artificial neural network (ANN) which we trained to predict the expected output of high-order harmonic generation (HHG) process, while exploring a multi-dimensional parameter space. We argue on the utility and efficiency of the ANN model and demonstrate its ability to predict the outcome of HHG simulations. In this case study we present the results for a loose focusing HHG beamline, where the changing parameters are: the laser pulse energy, gas pressure, gas cell position relative to focus and gas cell length. The physical quantity which we predict here using ANN is directly related to the total harmonic yield in a specified spectral domain (20-40 eV). We discuss the versatility and adaptability of the presented method.


Sign in / Sign up

Export Citation Format

Share Document