scholarly journals Pit and tracheid anatomy explain the hydraulic safety- but not the hydraulic efficiency of 28 conifer species

Author(s):  
Yanjun Song ◽  
Lourens Poorter ◽  
Angelina Horsting ◽  
Sylvain Delzon ◽  
Frank Sterck

Abstract Conifers face increased drought mortality risks because of drought-induced embolism in their vascular system. Variation in embolism resistance may result from species differences in pit structure and function, as pits control the air seeding between water transporting conduits. This study quantifies variation in embolism resistance and hydraulic conductivity for 28 conifer species grown in a 50-year-old common garden experiment and assesses the underlying mechanisms. Conifer species with a small pit aperture, high pit aperture resistance and large valve effect were more resistant to embolism, as they all may reduce air seeding. Surprisingly, hydraulic conductivity was only negatively correlated with tracheid cell wall thickness. Embolism resistance and its underlying pit traits related to pit size and sealing were stronger phylogenetically controlled than hydraulic conductivity and anatomical tracheid traits. Conifers differed in hydraulic safety and hydraulic efficiency, but there was no trade-off between safety and efficiency because they are driven by different xylem anatomical traits that are under different phylogenetic control.

2020 ◽  
Author(s):  
Lucian Kaack ◽  
Matthias Weber ◽  
Emilie Isasa ◽  
Zohreh Karimi ◽  
Shan Li ◽  
...  

SummaryEmbolism spreading in angiosperm xylem occurs via mesoporous pit membranes between vessels. Here, we investigate how the size of pore constrictions in pit membranes is related to pit membrane thickness and embolism resistance.In three models, pit membranes are modelled as multiple layers to investigate how pit membrane thickness and the number of intervessel pits per vessel determine pore constriction sizes, the probability of encountering large pores, and air-seeding. These estimations were complemented by measurements of pit membrane thickness, embolism resistance, and number of intervessel pits per vessel (n = 31, 31, and 20 species, respectively).Constriction sizes in pores decreased with increasing pit membrane thickness, which agreed with the measured relationship between pit membrane thickness and embolism resistance. The number of pits per vessel affected constriction size and embolism resistance much less than pit membrane thickness. A strong relationship between estimated air-seeding pressures and measured embolism resistance was observed.Pore constrictions provide a mechanistic explanation why pit membrane thickness determines embolism resistance, and suggest that hydraulic safety can be uncoupled from hydraulic efficiency. Although embolism spreading remains puzzling and encompasses more than pore constriction sizes, angiosperms are unlikely to have leaky pit membranes, which enables tensile transport of water.


2020 ◽  
Vol 40 (12) ◽  
pp. 1668-1679
Author(s):  
Lucrezia Unterholzner ◽  
Marco Carrer ◽  
Andreas Bär ◽  
Barbara Beikircher ◽  
Birgit Dämon ◽  
...  

Abstract The performance and distribution of woody species strongly depend on their adjustment to environmental conditions based on genotypic and phenotypic properties. Since more intense and frequent drought events are expected due to climate change, xylem hydraulic traits will play a key role under future conditions, and thus, knowledge of hydraulic variability is of key importance. In this study, we aimed to investigate the variability in hydraulic safety and efficiency of the conifer shrub Juniperus communis based on analyses along an elevational transect and a common garden approach. We studied (i) juniper plants growing between 700 and 2000 m a.s.l. Innsbruck, Austria, and (ii) plants grown in the Innsbruck botanical garden (Austria) from seeds collected at different sites across Europe (France, Austria, Ireland, Germany and Sweden). Due to contrasting environmental conditions at different elevation and provenance sites and the wide geographical study area, pronounced variation in xylem hydraulics was expected. Vulnerability to drought-induced embolisms (hydraulic safety) was assessed via the Cavitron and ultrasonic acoustic emission techniques, and the specific hydraulic conductivity (hydraulic efficiency) via flow measurements. Contrary to our hypothesis, relevant variability in hydraulic safety and efficiency was neither observed across elevations, indicating a low phenotypic variation, nor between provenances, despite expected genotypic differences. Interestingly, the provenance from the most humid and warmest site (Ireland) and the northernmost provenance (Sweden) showed the highest and the lowest embolism resistance, respectively. The hydraulic conductivity was correlated with plant height, which indicates that observed variation in hydraulic traits was mainly related to morphological differences between plants. We encourage future studies to underlie anatomical traits and the role of hydraulics for the broad ecological amplitude of J. communis.


2011 ◽  
Author(s):  
David Granot ◽  
Noel Michelle Holbrook

Plant vascular tissues are superhighways whose development and function have profound implications for productivity, yield and stress response. Preliminary studies by the PI indicated that sugar metabolism mediated by fructokinases (FRKs) has a pronounced effect on the transport properties of the xylem. The goal of this research was to determine how the main fructokinase gene, FRK2, and the only plastidic fructokinase, FRK3, influence vascular development and physiology, emphasizing processes that occur at both the cellular and organismic level. We found that both genes are expressed in vascular tissues, but FRK3 is expressed primarily in vascular tissues of mature petioles. Vascular anatomy of plants with antisense suppression of FRK2 uncovered that FRK2 is necessary for xylem and phloem development, most likely due to its role in vascular cell-wall synthesis, and affects vascular development all over the plant. As a result, suppression of FRK2 reduced hydraulic conductivity of roots, stem and leaves and restricted sugar phloem transport. Vascular anatomy of plants with RNAi suppression of FRK3 uncovered that FRK3 is required for vascular development in mature petiole but its role is partially complemented by FRK2. Suppression of FRK3 combined with partial suppression of FRK2 had effects completely different from that of FRK2 suppression, resulting in wilting of mature leaves rather than young leaves of FRK2 suppressed plants, and decreased export of photoassimilates. This primary effect of FRK2 suppression on mature petioles had a secondary effect, reducing the hydraulic conductivity in roots and stem. The very fact that a plastidic fructokinase plays a role in vascular development is quite surprising and we are still seeking to uncover its metabolic mode-of-action. Yet, it is clear that these two fructokinases have different roles in the coordination between photosynthetic capacity and vascular development. We have started analyzing the role of the last third FRK, FRK1, and discovered that it is also expressed exclusively in vascular tissues. It appears therefore, that all FRKs studied here are involved in vascular development.   An interesting unexpected outcome of this study was the connection of FRK2 with hormonal regulation of vascular development, most likely auxin. This observation together with the yet to be solved questions on the exact roles of FRK3 are the subjects of our current efforts. 


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 850
Author(s):  
Xin Jiang ◽  
Brendan Choat ◽  
Yong-Jiang Zhang ◽  
Xin-Yi Guan ◽  
Wen Shi ◽  
...  

Mangroves growing in tropical and subtropical intertidal zones face challenges from warming and altered rainfall patterns associated with global climate change. Intraspecific variation in hydraulic traits may allow a mangrove species to acclimate to novel climatic conditions, yet little is known regarding the potential for adaptive plasticity in these traits. In this study, we aimed to quantify the variation in plant hydraulic traits of two widespread mangrove species growing across a latitudinal gradient. We investigated the xylem hydraulic structure and function of Avicennia marina and Aegiceras corniculatum, across three sites spanning a latitudinal gradient of 17.45° in eastern Australia. We found that both species were highly resistant to xylem embolism and that there was significant intraspecific variation in hydraulic traits between sites. The highest embolism resistance and sapwood-specific hydraulic conductivity (KS) were found at the lowest latitude site that had the highest mean annual temperature and precipitation. A. marina showed no differences in vessel size and density among sites. It has other special features such as successive cambia enhancing its ability to adapt to a large environmental gradient. In contrast, A. corniculatum showed higher vessel densities at lower latitudes. There was a significant and positive correlation (R2 = 0.72, p < 0.05) between KS and embolism resistance across species and sites, suggesting the absence of a tradeoff between hydraulic efficiency and safety. Both embolism resistance and KS were negatively correlated with wood density but positively with vessel wall reinforcement. This study reveals that these two widespread mangrove species were adapted to warmer climates by enhancing both hydraulic efficiency and safety.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 359
Author(s):  
Hsiang-Hao Chuang ◽  
Yen-Yi Zhen ◽  
Yu-Chen Tsai ◽  
Cheng-Hao Chuang ◽  
Ming-Shyan Huang ◽  
...  

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which leads to changes in protein conformation and function. Pin1 is widely overexpressed in cancers and plays an important role in tumorigenesis. Mounting evidence has revealed that targeting Pin1 is a potential therapeutic approach for various cancers by inhibiting cell proliferation, reducing metastasis, and maintaining genome stability. In this review, we summarize the underlying mechanisms of Pin1-mediated upregulation of oncogenes and downregulation of tumor suppressors in cancer development. Furthermore, we also discuss the multiple roles of Pin1 in cancer hallmarks and examine Pin1 as a desirable pharmaceutical target for cancer therapy. We also summarize the recent progress of Pin1-targeted small-molecule compounds for anticancer activity.


2021 ◽  
Author(s):  
Ana Clara Fanton ◽  
Craig Brodersen

Abstract Xylella fastidiosa (Xf) is the xylem-dwelling bacterial agent associated with Pierce’s Disease (PD), which leads to significant declines in productivity in agriculturally important species like grapevine (Vitis vinifera). Xf spreads through the xylem network by digesting the pit membranes between adjacent vessels, thereby potentially changing the hydraulic properties of the stem. However, the effects of Xf on water transport varies depending on the plant host and the infection stage, presenting diverse outcomes. Here, we investigated the effects of polygalacturonase, an enzyme known to be secreted by Xf when it produces biofilm on the pit membrane surface, on stem hydraulic conductivity and pit membrane integrity. Experiments were performed on six grapevine genotypes with varying levels of PD resistance, with the expectation that pit membrane resistance to degradation by polygalacturonase may play a role in PD-resistance. Our objective was to study a single component of this pathosystem in isolation to better understand the mechanisms behind reported changes in hydraulics, thereby excluding the biological response of the plant to the presence of Xf in the vascular system. Pit membrane damage only occurred in stems perfused with polygalacturonase. Although the damaged pit membrane area was small (2-9% of the total pit aperture area), membrane digestion led to significant changes in the median air-seeding thresholds, and most importantly, shifted frequency distribution. Finally, enzyme perfusion also resulted in a universal reduction in stem hydraulic conductivity, suggesting the development of tyloses may not be the only contributing factor to reduced hydraulic conductivity in infected grapevine.


2021 ◽  
Author(s):  
Sean Thomas ◽  
Kathryn Wierenga ◽  
James Pestka ◽  
Andrew Olive

Alveolar macrophages (AMs) are tissue resident cells in the lungs derived from the fetal liver that maintain lung homeostasis and respond to inhaled stimuli. While the importance of AMs is undisputed, they remain refractory to standard experimental approaches and high-throughput functional genetics as they are challenging to isolate and rapidly lose AM properties in standard culture. This limitation hinders our understanding of key regulatory mechanisms that control AM maintenance and function. Here, we describe the development of a new model, fetal liver-derived alveolar-like macrophages (FLAMs), which maintains cellular morphologies, expression profiles, and functional mechanisms similar to murine AMs. FLAMs combine treatment with two key cytokines for AM maintenance, GM-CSF and TGFβ. We leveraged the long-term stability of FLAMs to develop functional genetic tools using CRISPR-Cas9-mediated gene editing. Targeted editing confirmed the role of AM-specific gene Marco and the IL-1 receptor Il1r1 in modulating the AM response to crystalline silica. Furthermore, a genome-wide knockout library using FLAMs identified novel genes required for surface expression of the AM marker Siglec-F, most notably those related to the peroxisome. Taken together, our results suggest that FLAMs are a stable, self-replicating model of AM function that enables previously impossible global genetic approaches to define the underlying mechanisms of AM maintenance and function.


2020 ◽  
Author(s):  
Jaap van Krugten ◽  
Noémie Danné ◽  
Erwin J.G. Peterman

AbstractSensing and reacting to the environment is essential for survival and procreation of most organisms. Caenorhabditis elegans senses soluble chemicals with transmembrane proteins (TPs) in the cilia of its chemosensory neurons. Development, maintenance and function of these cilia relies on intraflagellar transport (IFT), in which motor proteins transport cargo, including sensory TPs, back and forth along the ciliary axoneme. Here we use live fluorescence imaging to show that IFT machinery and the sensory TP OCR-2 reversibly redistribute along the cilium after exposure to repellant chemicals. To elucidate the underlying mechanisms, we performed single-molecule tracking experiments and found that OCR-2 distribution depends on an intricate interplay between IFT-driven transport, normal diffusion and subdiffusion that depends on the specific location in the cilium. These insights in the role of IFT on the dynamics of cellular signal transduction contribute to a deeper understanding of the regulation of sensory TPs and chemosensing.


2020 ◽  
Author(s):  
Shahad Albadri ◽  
Olivier Armant ◽  
Tairi Aljand-Geschwill ◽  
Filippo Del Bene ◽  
Matthias Carl ◽  
...  

AbstractPromoting the regeneration or survival of retinal ganglion cells (RGCs) is one focus of regenerative medicine. Homeobox Barhl transcription factors might be instrumental in these processes. In mammals, only barhl2 is expressed in the retina and is required for both subtype identity acquisition of amacrine cells and for the survival of RGCs downstream of Atoh7, a transcription factor necessary for RGC genesis. The underlying mechanisms of this dual role of Barhl2 in mammals have remained elusive. Whole genome duplication in the teleost lineage generated the barhl1a and barhl2 paralogues. In the Zebrafish retina, Barhl2 functions as determinant of subsets of amacrine cells lineally related to RGCs independently of Atoh7. In contrast, barhl1a expression depends on Atoh7 but its expression dynamics and function have not been studied. Here we describe for the first time a Barhl1a:GFP reporter line in vivo showing that Barhl1a turns on exclusively in subsets of RGCs and their post-mitotic precursors. We also show transient expression of Barhl1a:GFP in diencephalic neurons extending their axonal projections as part of the post-optic commissure, at the time of optic chiasm formation. This work sets the ground for future studies on RGC subtype identity, axonal projections and genetic specification of Barhl1a-positive RGCs and commissural neurons.


Sign in / Sign up

Export Citation Format

Share Document