Drug Discovery

2018 ◽  
pp. 399-404
Author(s):  
S. Nassir Ghaemi

Newer and better medications are obtained as part of the drug discovery process, which occurs mainly in the pharmaceutical industry. This process is hampered by excessive attention to marketing demands, as opposed to scientific exploration. It also is impaired by the psychiatric profession’s mistaken ideologies, whether psychoanalytic orthodoxy in the past or DSM beliefs of the present. Wrong clinical phenotypes impair finding new pharmacological mechanisms and targeting them well to the write clinical indications. Perhaps as a consequence, no treatments have been developed in the last few decades, since DSM-III, that are more effective than prior agents. Progress for the future in drug discovery will require not just better neurobiological work, but also a new approach to clinical diagnoses in psychiatry.

2019 ◽  
Vol 24 (8) ◽  
pp. 791-801 ◽  
Author(s):  
Shenaz B. Bunally ◽  
Christopher N. Luscombe ◽  
Robert J. Young

During the past decade, the physicochemical quality of molecules under investigation at all stages of the drug discovery process has come under particular scrutiny. The issues associated with excessive lipophilicity and poor solubility in particular are many and varied, ranging from poor outcomes in screening campaigns to promiscuity, limited and/or poorly predictable pharmacokinetic exposure, and, ultimately, greater chances of clinical failure. In this review, contemporary methods to secure key measurements are described along with their relevance to understanding the behavior of molecules in environments pertinent to pharmacological activity. Together, the various measurements contribute to predictive models of both the physicochemical properties themselves and the outcomes they influence.


Author(s):  
Mark A. Griep ◽  
Marjorie L. Mikasen

ReAction! gives a scientist's and artist's response to the dark and bright sides of chemistry found in 140 films, most of them contemporary Hollywood feature films but also a few documentaries, shorts, silents, and international films. Even though there are some examples of screen chemistry between the actors and of behind-the-scenes special effects, this book is really about the chemistry when it is part of the narrative. It is about the dualities of Dr. Jekyll vs. inventor chemists, the invisible man vs. forensic chemists, chemical weapons vs. classroom chemistry, chemical companies that knowingly pollute the environment vs. altruistic research chemists trying to make the world a better place to live, and, finally, about people who choose to experiment with mind-altering drugs vs. the drug discovery process. Little did Jekyll know when he brought the Hyde formula to his lips that his personality split would provide the central metaphor that would come to describe chemistry in the movies. This book explores the two movie faces of this supposedly neutral science. Watching films with chemical eyes, Dr. Jekyll is recast as a chemist engaged in psychopharmaceutical research but who becomes addicted to his own formula. He is balanced by the often wacky inventor chemists who make their discoveries by trial-and-error.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 546
Author(s):  
Miroslava Nedyalkova ◽  
Vasil Simeonov

A cheminformatics procedure for a partitioning model based on 135 natural compounds including Flavonoids, Saponins, Alkaloids, Terpenes and Triterpenes with drug-like features based on a descriptors pool was developed. The knowledge about the applicability of natural products as a unique source for the development of new candidates towards deadly infectious disease is a contemporary challenge for drug discovery. We propose a partitioning scheme for unveiling drug-likeness candidates with properties that are important for a prompt and efficient drug discovery process. In the present study, the vantage point is about the matching of descriptors to build the partitioning model applied to natural compounds with diversity in structures and complexity of action towards the severe diseases, as the actual SARS-CoV-2 virus. In the times of the de novo design techniques, such tools based on a chemometric and symmetrical effect by the implied descriptors represent another noticeable sign for the power and level of the descriptors applicability in drug discovery in establishing activity and target prediction pipeline for unknown drugs properties.


Sign in / Sign up

Export Citation Format

Share Document