scholarly journals Spectral Variability of Radio Sources at Low Frequencies

Author(s):  
K Ross ◽  
J R Callingham ◽  
N Hurley-Walker ◽  
N Seymour ◽  
P Hancock ◽  
...  

Abstract Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral variability for a large population of extragalactic radio sources are now possible. Using two epochs of observations from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey that were taken one year apart, we search for spectral variability across 100–230 MHz for 21,558 sources. We present methodologies for detecting variability in the spectrum between epochs and for classifying the type of variability: either as a change in spectral shape or as a uniform change in flux density across the bandwidth. We identify 323 sources with significant spectral variability over a year-long timescale. Of the 323 variable sources, we classify 51 of these as showing a significant change in spectral shape. Variability is more prevalent in peaked-spectrum sources, analogous to gigahertz-peaked spectrum and compact steep-spectrum sources, compared to typical radio galaxies. We discuss the viability of several potential explanations of the observed spectral variability, such as interstellar scintillation and jet evolution. Our results suggest that the radio sky in the megahertz regime is more dynamic than previously suggested.


2019 ◽  
Vol 15 (S356) ◽  
pp. 375-375
Author(s):  
Sarah White

AbstractLow-frequency radio emission allows powerful active galactic nuclei (AGN) to be selected in a way that is unaffected by dust obscuration and orientation of the jet axis. It also reveals past activity (e.g. radio lobes) that may not be evident at higher frequencies. Currently, there are too few “radio-loud” galaxies for robust studies in terms of redshift-evolution and/or environment. Hence our use of new observations from the Murchison Widefield Array (the SKA-Low precursor), over the southern sky, to construct the GLEAM 4-Jy Sample (1,860 sources at S151MHz > 4 Jy). This sample is dominated by AGN and is 10 times larger than the heavily relied-upon 3CRR sample (173 sources at S178MHz > 10 Jy) of the northern hemisphere. In order to understand how AGN influence their surroundings and the way galaxies evolve, we first need to correctly identify the galaxy hosting the radio emission. This has now been completed for the GLEAM 4-Jy Sample – through repeated visual inspection and extensive checks against the literature – forming a valuable, legacy dataset for investigating relativistic jets and their interplay with the environment.



Author(s):  
T. M. O. Franzen ◽  
N. Hurley-Walker ◽  
S. V. White ◽  
P. J. Hancock ◽  
N. Seymour ◽  
...  

Abstract We present the South Galactic Pole (SGP) data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. These data combine both years of GLEAM observations at 72–231 MHz conducted with the Murchison Widefield Array (MWA) and cover an area of 5 113 $\mathrm{deg}^{2}$ centred on the SGP at $20^{\mathrm{h}} 40^{\mathrm{m}} < \mathrm{RA} < 05^{\mathrm{h}} 04^{\mathrm{m}}$ and $-48^{\circ} < \mathrm{Dec} < -2^{\circ} $ . At 216 MHz, the typical rms noise is ${\approx}5$ mJy beam–1 and the angular resolution ${\approx}2$ arcmin. The source catalogue contains a total of 108 851 components above $5\sigma$ , of which 77% have measured spectral indices between 72 and 231 MHz. Improvements to the data reduction in this release include the use of the GLEAM Extragalactic catalogue as a sky model to calibrate the data, a more efficient and automated algorithm to deconvolve the snapshot images, and a more accurate primary beam model to correct the flux scale. This data release enables more sensitive large-scale studies of extragalactic source populations as well as spectral variability studies on a one-year timescale.



1980 ◽  
Vol 91 ◽  
pp. 403-403
Author(s):  
Ch. V. Sastry

Most observations of interplanetary scintillations of radio sources are made at frequencies around 80 MHz. These observations are limited to regions close to the sun, where the scintillations are maximum at this frequency. It is possible to extend these observations to the weakly scattering regions beyond 1 A.U. by making measurements at low frequencies. We have built a low frequency antenna system at Gauribidanur, India (Lat. 13° 36′ N and Long. 5 hrs. 10 min.), which can be used for this purpose. Although this system will not be dedicated to IPS, we intend to use it exclusively for solar wind observations during periods of interest.



Author(s):  
Natasha Hurley-Walker ◽  
John Morgan ◽  
Randall B. Wayth ◽  
Paul J. Hancock ◽  
Martin E. Bell ◽  
...  

AbstractWe present the results of an approximately 6 100 deg2 104–196 MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December: the MWACS. The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The survey covers approximately 20.5 h < RA < 8.5 h, − 58° < Dec < −14°over three frequency bands centred on 119, 150 and 180 MHz, with image resolutions of 6–3 arcmin. The catalogue has 3 arcmin angular resolution and a typical noise level of 40 mJy beam− 1, with reduced sensitivity near the field boundaries and bright sources. We describe the data reduction strategy, based upon mosaicked snapshots, flux density calibration, and source-finding method. We present a catalogue of flux density and spectral index measurements for 14 110 sources, extracted from the mosaic, 1 247 of which are sub-components of complexes of sources.



2017 ◽  
Vol 13 (S337) ◽  
pp. 311-312
Author(s):  
N. D. Ramesh Bhat ◽  
Steven E. Tremblay ◽  
Franz Kirsten

AbstractLow-frequency pulsar observations are well suited for studying propagation effects caused by the interstellar medium (ISM). This is particularly important for millisecond pulsars (MSPs) that are part of high-precision timing applications such as pulsar timing arrays (PTA), which aim to detect nanoHertz gravitational waves. MSPs in the southern hemisphere will also be the prime targets for PTAs with the South African MeerKAT, and eventually with the SKA. The development of the Murchison Widefield Array (MWA) and the Engineering Development Array (EDA) brings excellent opportunities for low-frequency studies of MSPs in the southern hemisphere. They enable observations at frequencies from 50 MHz to 300 MHz, and can be exploited for a wide range of studies relating to pulsar emission physics and probing the ISM.



Author(s):  
Sarah V. White ◽  
Thomas M. O. Franzen ◽  
Chris J. Riseley ◽  
O. Ivy Wong ◽  
Anna D. Kapińska ◽  
...  

Abstract The entire southern sky (Declination, $\delta< 30^{\circ}$ ) has been observed using the Murchison Widefield Array (MWA), which provides radio imaging of $\sim$ 2 arcmin resolution at low frequencies (72–231 MHz). This is the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we have previously used a combination of visual inspection, cross-checks against the literature, and internal matching to identify the ‘brightest’ radio-sources ( $S_{\mathrm{151\,MHz}}>4$ Jy) in the extragalactic catalogue (Galactic latitude, $|b| >10^{\circ}$ ). We refer to these 1 863 sources as the GLEAM 4-Jy (G4Jy) Sample, and use radio images (of ${\leq}45$ arcsec resolution), and multi-wavelength information, to assess their morphology and identify the galaxy that is hosting the radio emission (where appropriate). Details of how to access all of the overlays used for this work are available at https://github.com/svw26/G4Jy. Alongside this we conduct further checks against the literature, which we document here for individual sources. Whilst the vast majority of the G4Jy Sample are active galactic nuclei with powerful radio-jets, we highlight that it also contains a nebula, two nearby, star-forming galaxies, a cluster relic, and a cluster halo. There are also three extended sources for which we are unable to infer the mechanism that gives rise to the low-frequency emission. In the G4Jy catalogue we provide mid-infrared identifications for 86% of the sources, and flag the remainder as: having an uncertain identification (129 sources), having a faint/uncharacterised mid-infrared host (126 sources), or it being inappropriate to specify a host (2 sources). For the subset of 129 sources, there is ambiguity concerning candidate host-galaxies, and this includes four sources (B0424–728, B0703–451, 3C 198, and 3C 403.1) where we question the existing identification.



Author(s):  
E. Lenc ◽  
C. S. Anderson ◽  
N. Barry ◽  
J. D. Bowman ◽  
I. H. Cairns ◽  
...  

AbstractWe present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72–300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.



2020 ◽  
Vol 494 (1) ◽  
pp. 135-145 ◽  
Author(s):  
R H W Cook ◽  
N Seymour ◽  
K Spekkens ◽  
N Hurley-Walker ◽  
P J Hancock ◽  
...  

ABSTRACT The search for emission from weakly interacting massive particle (WIMP) dark matter annihilation and decay has become a multipronged area of research not only targeting a diverse selection of astrophysical objects, but also taking advantage of the entire electromagnetic spectrum. The decay of WIMP particles into standard model particles has been suggested as a possible channel for synchrotron emission to be detected at low radio frequencies. Here, we present the stacking analysis of a sample of 33 dwarf spheroidal (dSph) galaxies with low-frequency (72–231 MHz) radio images from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. We produce radial surface brightness profiles of images centred upon each dSph galaxy with background radio sources masked. We remove 10 fields from the stacking due to contamination from either poorly subtracted, bright radio sources or strong background gradients across the field. The remaining 23 dSph galaxies are stacked in an attempt to obtain a statistical detection of any WIMP-induced synchrotron emission in these systems. We find that the stacked radial brightness profile does not exhibit a statistically significant detection above the 95 per cent confidence level of ∼1.5 mJy beam−1. This novel technique shows the potential of using low-frequency radio images to constrain fundamental properties of particle dark matter.



Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 112 ◽  
Author(s):  
Cameron Van Eck

Faraday tomography, the study of the distribution of extended polarized emission by strength of Faraday rotation, is a powerful tool for studying magnetic fields in the interstellar medium of our Galaxy and nearby galaxies. The strong frequency dependence of Faraday rotation results in very different observational strengths and limitations for different frequency regimes. I discuss the role these effects take in Faraday tomography below 1 GHz, emphasizing the 100–200 MHz band observed by the Low Frequency Array and the Murchison Widefield Array. With that theoretical context, I review recent Faraday tomography results in this frequency regime, and discuss expectations for future observations.



2018 ◽  
Vol 613 ◽  
pp. A58 ◽  
Author(s):  
C. L. Van Eck ◽  
M. Haverkorn ◽  
M. I. R. Alves ◽  
R. Beck ◽  
P. Best ◽  
...  

The polarization properties of radio sources at very low frequencies (<200 MHz) have not been widely measured, but the new generation of low-frequency radio telescopes, including the Low Frequency Array (LOFAR: a Square Kilometre Array Low pathfinder), now gives us the opportunity to investigate these properties. In this paper, we report on the preliminary development of a data reduction pipeline to carry out polarization processing and Faraday tomography for data from the LOFAR Two-meter Sky Survey (LOTSS) and present the results of this pipeline from the LOTSS preliminary data release region (10h45m–15h30m right ascension, 45°–57° declination, 570 square degrees). We have produced a catalog of 92 polarized radio sources at 150 MHz at 4.′3 resolution and 1 mJy rms sensitivity, which is the largest catalog of polarized sources at such low frequencies. We estimate a lower limit to the polarized source surface density at 150 MHz, with our resolution and sensitivity, of 1 source per 6.2 square degrees. We find that our Faraday depth measurements are in agreement with previous measurements and have significantly smaller errors. Most of our sources show significant depolarization compared to 1.4 GHz, but there is a small population of sources with low depolarization indicating that their polarized emission is highly localized in Faraday depth. We predict that an extension of this work to the full LOTSS data would detect at least 3400 polarized sources using the same methods, and probably considerably more with improved data processing.



Sign in / Sign up

Export Citation Format

Share Document