scholarly journals Polarization of hot Jupiter systems: a likely detection of stellar activity and a possible detection of planetary polarization

2021 ◽  
Vol 502 (2) ◽  
pp. 2331-2345
Author(s):  
Jeremy Bailey ◽  
Kimberly Bott ◽  
Daniel V Cotton ◽  
Lucyna Kedziora-Chudczer ◽  
Jinglin Zhao ◽  
...  

ABSTRACT We present high-precision linear polarization observations of four bright hot Jupiter systems (τ Boo, HD 179949, HD 189733, and 51 Peg) and use the data to search for polarized reflected light from the planets. The data for 51 Peg are consistent with a reflected light polarization signal at about the level expected with 2.8σ significance and a false alarm probability of 1.9 per cent. More data will be needed to confirm a detection of reflected light in this system. HD 189733 shows highly variable polarization that appears to be most likely the result of magnetic activity of the host star. This masks any polarization due to reflected light, but a polarization signal at the expected level of ∼20 ppm cannot be ruled out. τ Boo and HD 179949 show no evidence for polarization due to reflected light. The results are consistent with the idea that many hot Jupiters have low geometric albedos. Conclusive detection of polarized reflected light from hot Jupiters is likely to require further improvements in instrument sensitivity.

2013 ◽  
Vol 9 (S302) ◽  
pp. 239-242
Author(s):  
K. Poppenhaeger ◽  
S. J. Wolk

AbstractIt is a long-standing question in exoplanet research if Hot Jupiters can influence the magnetic activity of their host stars. While cool stars usually spin down with age and become inactive, an input of angular momentum through tidal interaction, as seen for example in close binaries, can preserve high activity levels over time. This may also be the case for cool stars hosting a Hot Jupiter. However, selection effects from planet detection methods often dominate the activity levels seen in samples of exoplanet host stars, and planet-induced, systematically enhanced stellar activity has not been detected unambiguously so far. We have developed an approach to identify planet-induced stellar spin-up avoiding the selection biases from planet detection, by using visual proper motion binaries in which only one of the stars possesses a Hot Jupiter. This approach immediately rids one of the ambiguities of detection biases: with two co-eval stars, the second star acts as a negative control. We present results from our ongoing observational campaign at X-ray wavelengths and in the optical, and present several outstanding systems which display significant age/activity discrepancies presumably caused by their Hot Jupiters.


2019 ◽  
Vol 624 ◽  
pp. A62 ◽  
Author(s):  
M. Mallonn ◽  
J. Köhler ◽  
X. Alexoudi ◽  
C. von Essen ◽  
T. Granzer ◽  
...  

The depth of a secondary eclipse contains information of both the thermally emitted light component of a hot Jupiter and the reflected light component. If the day side atmosphere of the planet is assumed to be isothermal, it is possible to disentangle both. In this work, we analyzed 11 eclipse light curves of the hot Jupiter HAT-P-32 b obtained at 0.89 μm in the z′ band. We obtained a null detection for the eclipse depth with state-of-the-art precision, −0.01 ± 0.10 ppt. We confirm previous studies showing that a non-inverted atmosphere model is in disagreement to the measured emission spectrum of HAT-P-32 b. We derive an upper limit on the reflected light component, and thus, on the planetary geometric albedo Ag. The 97.5% confidence upper limit is Ag < 0.2. This is the first albedo constraint for HAT-P-32 b, and the first z′ band albedo value for any exoplanet. This finding disfavors the influence of large-sized silicate condensates on the planetary day side. We inferred z′ band geometric albedo limits from published eclipse measurements also for the ultra-hot Jupiters WASP-12 b, WASP-19 b, WASP-103 b, and WASP-121 b, applying the same method. These values consistently point to a low reflectivity in the optical to near-infrared transition regime for hot to ultra-hot Jupiters.


2021 ◽  
Vol 503 (4) ◽  
pp. 5223-5231
Author(s):  
C F Zhang ◽  
J W Xu ◽  
Y P Men ◽  
X H Deng ◽  
Heng Xu ◽  
...  

ABSTRACT In this paper, we investigate the impact of correlated noise on fast radio burst (FRB) searching. We found that (1) the correlated noise significantly increases the false alarm probability; (2) the signal-to-noise ratios (S/N) of the false positives become higher; (3) the correlated noise also affects the pulse width distribution of false positives, and there will be more false positives with wider pulse width. We use 55-h observation for M82 galaxy carried out at Nanshan 26m radio telescope to demonstrate the application of the correlated noise modelling. The number of candidates and parameter distribution of the false positives can be reproduced with the modelling of correlated noise. We will also discuss a low S/N candidate detected in the observation, for which we demonstrate the method to evaluate the false alarm probability in the presence of correlated noise. Possible origins of the candidate are discussed, where two possible pictures, an M82-harboured giant pulse and a cosmological FRB, are both compatible with the observation.


2020 ◽  
Vol 501 (1) ◽  
pp. 701-712
Author(s):  
N Yonemaru ◽  
S Kuroyanagi ◽  
G Hobbs ◽  
K Takahashi ◽  
X-J Zhu ◽  
...  

ABSTRACT Cosmic strings are potential gravitational-wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four events with a false alarm probability less than 1 per cent. However further investigation shows that all of these are likely to be spurious. As there are no convincing detections we place upper limits on the GW amplitude for different event durations. From these bounds we place limits on the cosmic string tension of Gμ ∼ 10−5, and highlight that this bound is independent from those obtained using other techniques. We discuss the physical implications of our results and the prospect of probing cosmic strings in the era of Square Kilometre Array.


2020 ◽  
Vol 500 (2) ◽  
pp. 2711-2731
Author(s):  
Andrew Bunting ◽  
Caroline Terquem

ABSTRACT We calculate the conversion from non-adiabatic, non-radial oscillations tidally induced by a hot Jupiter on a star to observable spectroscopic and photometric signals. Models with both frozen convection and an approximation for a perturbation to the convective flux are discussed. Observables are calculated for some real planetary systems to give specific predictions. The photometric signal is predicted to be proportional to the inverse square of the orbital period, P−2, as in the equilibrium tide approximation. However, the radial velocity signal is predicted to be proportional to P−1, and is therefore much larger at long orbital periods than the signal corresponding to the equilibrium tide approximation, which is proportional to P−3. The prospects for detecting these oscillations and the implications for the detection and characterization of planets are discussed.


2019 ◽  
Vol 490 (1) ◽  
pp. 1094-1110 ◽  
Author(s):  
Diana Kossakowski ◽  
Néstor Espinoza ◽  
Rafael Brahm ◽  
Andrés Jordán ◽  
Thomas Henning ◽  
...  

Abstract We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package juliet reveals that TOI-150b is a $1.254\pm 0.016\ \rm {R}_ \rm{J}$, massive ($2.61^{+0.19}_{-0.12}\ \rm {M}_ \rm{J}$) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated ($R_ \rm{P}$ = $1.478^{+0.022}_{-0.029} \,\mathrm{ R}_ \rm{J}$, $M_ \rm{P}$ = $1.219\pm 0.11 \, \rm{M}_ \rm{J}$) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit ($e=0.262^{+0.045}_{-0.037}$), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter–McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).


2020 ◽  
Vol 642 ◽  
pp. A157 ◽  
Author(s):  
N. Meunier ◽  
A.-M. Lagrange

Context. The detectability of exoplanets and the determination of their projected mass in radial velocity are affected by stellar magnetic activity and photospheric dynamics. Among those processes, the effect of granulation, and even more so of supergranulation, has been shown to be significant in the solar case. The impact for other spectral types has not yet been characterised. Aims. Our study is aimed at quantifying the impact of these flows for other stars and estimating how such contributions affect their performance. Methods. We analysed a broad array of extended synthetic time series that model these processes to characterise the impact of these flows on exoplanet detection for main sequence stars with spectral types from F6 to K4. We focussed on Earth-mass planets orbiting within the habitable zone around those stars. We estimated the expected detection rates and detection limits, tested the tools that are typically applied to such observations, and performed blind tests. Results. We find that both granulation and supergranulation on these stars significantly affect planet mass characterisation in radial velocity when performing a follow-up of a transit detection: the uncertainties on these masses are sometimes below 20% for a 1 MEarth (for granulation alone or for low-mass stars), but they are much larger in other configurations (supergranulation, high-mass stars). For granulation and low levels of supergranulation, the detection rates are good for K and late G stars (if the number of points is large enough), but poor for more massive stars. The highest level of supergranulation leads to a very poor performance, even for K stars; this is both due to low detection rates and to high levels of false positives, even for a very dense temporal sampling over 10 yr. False positive levels estimated from standard false alarm probabilities sometimes significantly overestimate or underestimate the true level, depending on the number of points: it is, therefore, crucial to take this effect into account when analysing observations. Conclusions. We conclude that granulation and supergranulation significantly affect the performance of exoplanet detectability. Future works will focus on improving the following three aspects: decreasing the number of false positives, increasing detection rates, and improving the false alarm probability estimations from observations.


Author(s):  
С.Б. Егоров ◽  
Р.И. Горбачев

«Выбросовая» вероятностная модель работы обнаружителя в режиме ожидания сигнала, предложенная авторами в [1], использована для оценки влияния селекции выбросов по длительности на вероятность ложной тревоги. Флюктуационные выбросы помехового индикаторного процесса, превысившие пороги селекции по уровню и длительности, трактуются как редкие события на интервале ожидания сигнала, подчиняющиеся вероятностному закону Пуассона. При условии, что средний период следования ложных выбросов превышает интервал корреляции индикаторного процесса, получено соотношение между средним числом выбросов любой длительности и средним числом выбросов, превысивших пороговую длительность. На основании известных числовых и вероятностных характеристик выбросов нормального стационарного случайного процесса получен уравнения, связывающие относительные пороги селекции по уровню и длительности с вероятностью ложной тревоги на интервале ожидания сигнала. Предложена методика определения порога селекции по длительности для снижения порога селекции по уровню до заданной величины. «Emissional» probability model of the detector in stand-by mode proposed by the authors in [1], is intended for estimation of false alarm rate dependence from the value of time-selection threshold. Fluctuation emissions of the noise indicator process are interpreted as rare events correspond to Poisson distribution. Assuming that average rate of false alarms exceeds the correlation interval of indicator process, obtained equation between average number of false alarms of any duration and average number of false alarms exceed the time threshold. Based on known numerical and statistical characteristics of emissions of normal stationary random process obtained equations, relating time and level thresholds with false alarm probability on stand-by mode time interval. Also suggested a method of determining time threshold intended to reduce level threshold.


2019 ◽  
Vol 625 ◽  
pp. A80 ◽  
Author(s):  
Géza Kovács ◽  
Tamás Kovács

Ground-based observations of the secondary eclipse in the 2MASS K band are presented for the hot Jupiter WASP-121b. These are the first occultation observations of an extrasolar planet that were carried out with an instrument attached to a 1 m class telescope (the SMARTS 1.3 m). We find a highly significant eclipse depth of (0.228 ± 0.023)%. Together with other planet atmosphere measurements, including the Hubble Space Telescope near-infrared emission spectrum, current data support more involved atmosphere models with species producing emission and absorption features, rather than simple smooth blackbody emission. Analysis of the time difference between the primary and secondary eclipses and the durations of these events yields an eccentricity of e = 0.0207 ± 0.0153, which is consistent with the earlier estimates of low or zero eccentricity, but with a smaller error. Comparing the observed occultation depth in the K band with the one derived under the assumption of zero Bond albedo and full heat redistribution, we find that WASP-121b has a deeper observed occultation depth than predicted. Together with the sample of 31 systems with K-band occultation data, this observation lends further support to the idea of inefficient heat transport between the day and night sides for most of the hot Jupiters.


Sign in / Sign up

Export Citation Format

Share Document