An exact solution of cosmic ray modulation problem in a stationary composite heliosphere model

2019 ◽  
Vol 491 (4) ◽  
pp. 5826-5842
Author(s):  
Yuriy L Kolesnyk ◽  
Boris A Shakhov ◽  
Pavol Bobik ◽  
Marian Putis

ABSTRACT A new theoretical approach to describe the physical processes of energy particle propagation is proposed. This approach is based on the analytically iterative method for solving closed cosmic ray (CR) modulation problems, which was proposed by Shakhov and Kolesnyk. First, we have applied the approach on a simple model of the heliosphere, wherein the diffusion coefficients κ for each region of CR modulation are constants. This approach produced a very good matching of the obtained solution and also provided a numerical solution and an analytical solution. Finally, a modern problem of CR modulation in a stationary composite model of the heliosphere was considered. This model includes an environment that contains adjacent spherically symmetric regions with different modes of propagation of the solar wind (SW) speed for each layer. The CR scattering is due to different factors for each layer of the environment, as characterized by relevant κ values that simultaneously have dependence on the momentum of the particle p and the particle speed $\upsilon$, i.e. $\kappa \propto p\upsilon$. The local interstellar spectra (LISs) are given by a power-law unmodulated spectrum with the slope of the initial spectrum α, i.e. LIS ∝ p−α. An exact solution of the problem of CR modulation for low-energy particles and high-energy particles was first derived and qualitatively compared against the Voyager 1 data.

Recent experiments have extended the knowledge of the flux and energy spectra of individual cosmic-ray components to much higher energies than had previously been accessible. Both electron and nuclear components show a behaviour at high energy which is unexpected, and which carries information regarding the sources and the propagation of particles between sources and observer. Electromagnetic interactions which are suffered by the electrons in interstellar space should steepen their spectrum, a steepening that would reveal the average lifetime a cosmic-ray particle spends in the galaxy. Measurements up to 1000 GeV show no such steepening. It was discovered that the composition of the nuclear species which is now measured up to 100 GeV/nucleon changes with energy. This change indicates traversal of less interstellar matter by the high energy particles than by those of lower energy. We discuss the experimental evidence and its implication.


2017 ◽  
Author(s):  
Carlos Roberto Braga ◽  
"Rafael R. S. de Mendonca" ◽  
"Ezequiel Echer" ◽  
"Alisson DalLago" ◽  
"Ana Clara S. Pinto" ◽  
...  

1981 ◽  
Vol 94 ◽  
pp. 365-366
Author(s):  
J. Pérez-Peraza ◽  
S. S. Trivedi

The role of Coulombian energy losses in cosmic ray physics is generally over simplified by using the Bethe-Block formulation which does not depend explicitly on the temperature of the medium. The role of low energy particles is usually neglected, as a result of the over estimation of losses when the temperature of the medium is ignored. A deep analysis of Coulombian losses may raise the importance of these particles in the dynamics of the Galaxy. In fact, the deceleration of these particles is determined by charge interchange processes with the target ions and electrons, which energy dependence is roughly the inverse of ionisation losses. Even high energy particles may be subject to this kind of deceleration if the temperature is very high. The consideration of Coulombian losses through all energy ranges with explicit dependence on the temperature has been discussed by Perez and Lara (1979): a fully ionized medium of hydrogen has been assumed to prevail in most of cosmic ray sources. One kind of the implications is the determination of particle composition. It is claimed that a given kind of ion is preferentially accelerated or depleted depending on whether the acceleration is higher or lower than the deceleration rate at the beginning of the acceleration of thermal material. Species which undergo depletion are accelerated only if their energy is higher than that for which both rates are equated (Ec,E′c and E′c′) in such a way that only those of the hot tails of their thermal distributions are effectively accelerated. These will appear depleted relative to other species which are free accelerated because their deceleration rates at low energies are lower than the acceleration rate. It can be noted in the next figures, that if both rates would not intersect at the beginning of the acceleration, they would not join at higher energies because the acceleration rate grows faster with energy than the deceleration rate. Three arbitrary acceleration rates are used for illustration: Fermi-2nd order (αβW), Betatron or adiabatic heating (αβ2W) and shock wave acceleration (αW), where α, β and W are the efficiency, the particles velocity and the total energy per nucleon respectively. In Fig. 1 it can be seen that this selective acceleration relative to Coulombian losses is defined at different energy levels depending on the kind of acceleration involved. Since the main effect of the temperature on the losses at the beginning of the acceleration is through the local charge states of the ions, the sequence of energy losses among different species is highly assorted. This is translated in a great amount of possibilities of particle enhancements and depletions according to the temperature of the source and the kind of acceleration operating therein. If particles under go acceleration in a fully stripped state, the sequence of losses at all energy levels is such that the heavy elements are depleted in relation with the lighter ones; same is the situation, what-ever the initial charge state, for high energy particles in the range of ionisation. It may be concluded, on basis to the observational enhancement of heavy cosmic rays, that hot regions are not likely sources, and that acceleration initiates from thermal energies. On Fig. 2 it is illustrated the enhancement of Fe over 0 in solar flare conditions, on basis to the charge states as given by Jordan (1969). If α < 2.71 s−1 both elements would be depleted, whereas if α>3.45 s−1 both would be preferentially accelerated.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Hiromasa Suzuki ◽  
Aya Bamba ◽  
Ryo Yamazaki ◽  
Yutaka Ohira

Abstract In the current decade, GeV/TeV gamma-ray observations of several supernova remnants (SNRs) have implied that accelerated particles are escaping from their acceleration sites. However, when and how they escape from the SNR vicinities are yet to be understood. Recent studies have suggested that the particle escape might develop with thermal plasma ages of the SNRs. We present a systematic study on the time evolution of particle escape using thermal X-ray properties and gamma-ray spectra using 38 SNRs associated with GeV/TeV gamma-ray emissions. We conducted spectral fittings on the gamma-ray spectra using exponential cutoff power-law and broken power-law models to estimate the exponential cutoff or the break energies, both of which are indicators of particle escape. Plots of the gamma-ray cutoff/break energies over the plasma ages show similar tendencies to those predicted by analytical/numerical calculations of particle escape under conditions in which a shock is interacting with thin interstellar medium or clouds. The particle escape timescale is estimated as ∼100 kyr from the decreasing trends of the total energy of the confined protons with the plasma age. The large dispersions of the cutoff/break energies in the data may suggest an intrinsic variety of particle escape environments. This might be the cause of the complicated Galactic cosmic ray spectral shape measured on Earth.


2020 ◽  
Author(s):  
Luca Stevanato ◽  
Gabriele Baroni ◽  
Cristiano Fontana ◽  
Marcello Lunardon ◽  
Sandra Moretto ◽  
...  

&lt;p&gt;In the last decade the measurement of secondary cosmic ray neutrons has been established as a unique approach for intermediate scale observation of land surface hydrogen pools. Originally developed for soil moisture measurements, it has shown also promising applications for snow, biomass and canopy interception. The approach relies on the correlation between natural neutron background as created by cosmic-ray fluxes and local hydrogen pools. Due to the specific capabilities of the neutrons to move in air, the signal detected by the sensor installed above-ground is sensitive to an area of hundreds of meters providing a new perspective for proximal land-surface observations. The measurements are generally performed based on moderated proportional counters filled with Helium-3 or Boron and the moderation is created by adding shielding material (mostly polyethylene) around the counter.&lt;/p&gt;&lt;p&gt;The signal is affected by the temporal variability of the incoming neutron fluxes. At first, the variability of neutron fluxes is due to solar activities. The neutrons are further attenuated by the mass of the air and air humidity.&lt;/p&gt;&lt;p&gt;Specific corrections have been proposed to account for these effects. Air pressure and humidity corrections rely on local measurements that could be easily collected. Incoming correction due to solar cosmic-ray fluctuation is based on a worldwide network monitoring station (NMDB). This network provides online access to their data in real-time. However, this approach showed some limitations in region where incoming fluxes could be not representative of local conditions introducing errors that could be relevant for the estimation of the targeted variable. In addition, it requires the need of post-processing of the data resulting in some difficulties to provide, e.g., soil moisture observations in real-time.&lt;/p&gt;&lt;p&gt;In the present contribution, we show the results of tests conducted on an alternative commercial sensor based on scintillators. The new probe has the capability to identify different neutron energies ranges and gamma-rays providing new opportunities for hydrological observations at different spatial scales. In addition, the probe is sensitive to high energy particles that can be used for correcting the neutron signal by the variations of primary cosmic-ray flux. We present results from the comparison of the new probe with standard proportional counters and neutron monitor database in a long-term outdoor case study. We show how the use of local high energy particles is a practical alternative to account atmospheric corrections and overcome the limitation of using data from NMDB.&lt;/p&gt;


1963 ◽  
Vol 19 (4) ◽  
pp. 205
Author(s):  
WANG SHIH-WEI ◽  
KUANG HAO-HWAI ◽  
YUAN YU-KUEI

2019 ◽  
Vol 491 (4) ◽  
pp. 4852-4856 ◽  
Author(s):  
Hugh S Hudson ◽  
Alec MacKinnon ◽  
Mikolaj Szydlarski ◽  
Mats Carlsson

ABSTRACT High-energy particles enter the solar atmosphere from Galactic or solar coronal sources, and produce ‘albedo’ emission from the quiet Sun that is now observable across a wide range of photon energies. The interaction of high-energy particles in a stellar atmosphere depends essentially upon the joint variation of the magnetic field and plasma density, which heretofore has been characterized parametrically as P ∝ Bα with P the gas pressure and B the magnitude of the magnetic field. We re-examine that parametrization by using a self-consistent 3D MHD model (Bifrost) and show that this relationship tends to P ∝ B3.5 ± 0.1 based on the visible portions of the sample of open-field flux tubes in such a model, but with large variations from point to point. This scatter corresponds to the strong meandering of the open-field flux tubes in the lower atmosphere, which will have a strong effect on the prediction of the emission anisotropy (limb brightening). The simulations show that much of the open flux in coronal holes originates in weak-field regions within the granular pattern of the convective motions seen in the simulations.


2009 ◽  
Vol 5 (H15) ◽  
pp. 461-463 ◽  
Author(s):  
Klaus Dolag

AbstractIn galaxy clusters, non-thermal components such as magnetic field and high energy particles keep a record of the processes acting since early times till now. These components play key roles by controlling transport processes inside the cluster atmosphere and beyond and therefore have to be understood in detail by means of numerical simulations. The complexity of the intra cluster medium revealed by multi-frequency observations demonstrates that a variety of physical processes are in action and must be included properly to produce accurate and realistic models. Confronting the predictions of numerical simulations with observations allows us to validate different scenarios about origin and evolution of large scale magnetic fields and to investigate their role in transport and acceleration processes of cosmic rays.


Sign in / Sign up

Export Citation Format

Share Document