scholarly journals HGG-27. HNRNPA1 SPLICED VARIANT SENSITIZATION EFFECT DISCLOSED IN GLIOMA CELLS

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i22-i23
Author(s):  
Ajay Yadav

Abstract Glioblastoma is aggressive brain tumor. Glioma heterogeneity builds in hypoxic condition due to its intrinsic high apoptosis rate cause to develop a high selection clonal pressure. HnRNPA1 plays a key role in developing glycolytic tumor, shows its high expression exclusively in hypoxic glioma cells. Recently we observed one more spliced variant of hnRNPA1, encoding higher isoform, exclusively abundant in resistant glioma cell lines. Widely around the scientific community HnRNPA1 splice factor family protein was found distinctly regulating resistant glioma phenotype. To support our hypothesis, methodology we perform includes various apoptosis assays to critically understand hnRNPA1 spliced variant dependent pathway in Temozolomide resistant U87 glioma cells. Proteomic based apoptotic array and angiogenic array enable us to visualize selective knock down of hnRNPA1 has dominant role in promoting apoptotic cascade. Additionally, flow cytometry base annexin V-PI staining technique to understand early and late apoptosis was measured in selective hnRNPA1 spliced variant knockdown cells in presence or absence of PI3 kinase inhibitor wortmannin (5 micro molar). Results showed hnRNPA1 higher isoform knock down promotes more apoptosis compare to lower isoform. Interestingly, overexpression of HnRNPA1 higher isoform or lower isoform alone doesn’t promote apoptosis, however is prominently higher apoptosis in Bortezomib treated U87 glioma cells. These both isoforms are presently majorly in gliomas, but somehow for long was not recognized. Conclusion is to explore more related novel finding or therapeutic strategy to target higher isoform of hnRNPA1, using invivo mouse xenograft model.

Author(s):  
Kuan-Wei Su ◽  
Da-Liang Ou ◽  
Yu-Hsuan Fu ◽  
Hwei-Fang Tien ◽  
Hsin-An Hou ◽  
...  

AbstractCabozantinib is an orally available, multi-target tyrosine kinase inhibitor approved for the treatment of several solid tumours and known to inhibit KIT tyrosine kinase. In acute myeloid leukaemia (AML), aberrant KIT tyrosine kinase often coexists with t(8;21) to drive leukaemogenesis. Here we evaluated the potential therapeutic effect of cabozantinib on a selected AML subtype characterised by t(8;21) coupled with KIT mutation. Cabozantinib exerted substantial cytotoxicity in Kasumi-1 cells with an IC50 of 88.06 ± 4.32 nM, which was well within clinically achievable plasma levels. The suppression of KIT phosphorylation and its downstream signals, including AKT/mTOR, STAT3, and ERK1/2, was elicited by cabozantinib treatment and associated with subsequent alterations of cell cycle- and apoptosis-related molecules. Cabozantinib also disrupted the synthesis of an AML1-ETO fusion protein in a dose- and time-dependent manner. In a mouse xenograft model, cabozantinib suppressed tumourigenesis at 10 mg/kg and significantly prolonged survival of the mice. Further RNA-sequencing analysis revealed that mTOR-mediated signalling pathways were substantially inactivated by cabozantinib treatment, causing the downregulation of ribosome biogenesis and glycolysis, along with myeloid leukocyte activation. We suggest that cabozantinib may be effective in the treatment of AML with t(8;21) and KIT mutation. Relevant clinical trials are warranted.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 4039-4046 ◽  
Author(s):  
Suzanne Trudel ◽  
A. Keith Stewart ◽  
Eran Rom ◽  
Ellen Wei ◽  
Zhi Hua Li ◽  
...  

The association of fibroblast growth factor receptor 3 (FGFR3) expression with t(4;14) multiple myeloma (MM) and the demonstration of the transforming potential of this receptor tyrosine kinase (RTK) make it a particularly attractive target for drug development. We report here a novel and highly specific anti-FGFR3–neutralizing antibody (PRO-001). PRO-001 binds to FGFR3 expressed on transformed cells and inhibits FGFR3 autophosphorylation and downstream signaling. The antibody inhibited the growth of FGFR3-expressing FDCP cells (IC50 of 0.5 μg/mL) but not that of cells expressing FGFR1 or FGFR2, and potently inhibited FGFR3-dependent solid tumor growth in a mouse xenograft model. Furthermore, PRO-001 inhibited the growth of the FGFR3-expressing, human myeloma cell line, UTMC2. Inhibition of viability was still observed when cells were cocultured with stroma or in the presence of IL-6 or IGF-1. PRO-001 did not inhibit constitutive activation of K650E, G384D, and Y373C FGFR3 in myeloma cell lines and failed to inhibit the growth of these cells. Most importantly, however, PRO-001 induced cytotoxic responses in primary t(4;14)+ MM samples with an increase in apoptotic index of 20% to 80% as determined by annexin V staining. The data demonstrate that PRO-001 is a potent and specific inhibitor of FGFR3 and deserves further study for the treatment of FGFR3-expressing myeloma.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yulong Fu ◽  
Yang Zhang ◽  
Zhe Lei ◽  
Ting Liu ◽  
Tingting Cai ◽  
...  

Abstract Background Acquired epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance limits the long-term clinical efficacy of tyrosine kinase-targeting drugs. Although most of the mechanisms of acquired EGFR-TKI resistance have been revealed, the mechanism of ~ 15% of cases has not yet been elucidated. Methods Cell viability was analysed using the Cell Counting Kit-8 (CCK-8) assay. Proteome profiler array analysis was performed to find proteins contributing to acquired EGFR-TKI resistance. Secreted OPN was detected by ELISA. Immunohistochemical analysis was conducted to detect expression of integrin αV in NSCLC tissue. The effect of VS-6063 on apoptosis and proliferation of PC9 gefitinib-resistant cells was detected by fluorescence-activated cell sorting (FACS) and clonogenic assays. A mouse xenograft model was used to assess the effect of VS-6063 on the sensitivity of PC9 gefitinib-resistant cells to gefitinib. Results OPN was overexpressed in acquired EGFR-TKI-resistant NSCLCs. Secreted OPN contributed to acquired EGFR-TKI resistance by activating the integrin αVβ3/FAK pathway. Inhibition of FAK signalling increased sensitivity to EGFR-TKIs in PC9 gefitinib-resistant cells both in vitro and in vivo. Conclusions OPN contributes to acquired EGFR-TKI resistance by up-regulating expression of integrin αVβ3, which activates the downstream FAK/AKT and ERK signalling pathways to promote cell proliferation in NSCLC.


2013 ◽  
Vol 30 (1) ◽  
pp. 157-164 ◽  
Author(s):  
XIANG-JUN JI ◽  
SUI-HUA CHEN ◽  
LIN ZHU ◽  
HAO PAN ◽  
YUAN ZHOU ◽  
...  

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i4-i5
Author(s):  
Ajay Yadav

Abstract Glioblastoma is inevitably a recurrent cancer. Despite of recent advancement, temozolomide remain the prescribed lifeline drug, after the surgery. Inadvertently, MGMT (O6-methylguanine-DNA-methyltransferase) expression mechanistically linked with Temozolomide (alkylating drug) glioma resistant development. To understand the resistant against Temozolomide sought to deciphered, by making invitro drug resistant glioma cell lines. RNA seq analysis over a illumina platform; drug resistant glioma cell lines showed various critical key factor such as splice factor hnRNPA1 and deubiquitinating enzymes were showed to highly upregulated in resistant cell lines. Commonly, from our previous study, the stability of hnRNPA1 in presence of USP5 were showed to promote cell survival, whereas knocking down of USP5 significantly lower down the telomerase activity and NAD/NADH ratio enlarge. Furthermore, expression of MGMT was showed significantly downregulated in hnRNPA1 knock down T98G glioma cells, as well as in U87 Temozolomide resistant cells. Extrinsic apoptosis pathway was showed more prevalent in hnRNPA1 knock down glioma cells in presence of Trail ligand. Interestingly, we found one more spliced variants of hnRNPA1 exclusively expressing in drug resistant cells is new finding. Selectively knocking down of hnRNPA1 splice variant promotes apoptosis. RNA seq analysis followed the comparison between two hnRNPA1 spliced variant knock down, drug resistant glioma cell lines showed differentially expressed transcript support our finding to be distinctly regulated by hnRNPA1 spliced variants. Spliced variant of hnRNPA1 showed a potential therapeutic candidate signature.


2021 ◽  
Author(s):  
Erbao Bian ◽  
Xueran Chen ◽  
Li Cheng ◽  
Meng Cheng ◽  
Zhigang Chen ◽  
...  

Abstract BackgroundLong non-coding RNAs (lncRNAs) have been considered as one type of gene expression regulator for cancer development, but it is not clear how these are regulated. This study aimed to identify a specific lncRNA that promotes the glioma progression.MethodsRNA sequencing (RNA-seq) and quantitative real-time PCR were performed to screen differentially expressed genes. CCK-8, transwell migration, invasion assays and a mouse xenograft model were performed to determine the functions of TMEM44-AS1. Co-IP, ChIP, Dual-luciferase reporter assays, RNA pulldown and RNA immunoprecipitation assays were performed to study the molecular mechanism of TMEM44-AS1 and the downstream target.ResultsWe identified a novel lncRNA TMEM44-AS1, which was aberrantly expressed in glioma tissues, and that increased TMEM44-AS1 expression was correlated with malignant progression and poor survival for patients with glioma. Expression of TMEM44-AS1 increased the proliferation, colony formation, migration, and invasion of glioma cells. Knockdown of TMEM44-AS1 in glioma cells reduced cell proliferation, colony formation, migration and invasion, and tumor growth in a nude mouse xenograft model. Mechanistically, TMEM44-AS1 is directly bound to the SerpinB3, and sequentially activated Myc signaling; Myc transcriptionally induced TMEM44-AS1 and directly bound to the promoter and super-enhancer of TMEM44-AS1, thus forming a positive feedback loop with TMEM44-AS. Further studies demonstrated that Myc interacts with MED1 regulates the super-enhancer of TMEM44-AS1. More importantly, a novel small-molecule Myc inhibitor, Myci975, alleviated TMEM44-AS1-promoted the growth of glioma cells. Finally, TMEM44-AS1 activated IL-6 signaling by recruiting EGR1 to the promoter of IL-6 in glioma cells. ConclusionsOur study implicates a crucial role of the TMEM44-AS1-Myc axis in glioma progression and provides a possible anti-glioma therapeutic agent.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weizhi Chen ◽  
Yanhong Ji

Background: Hypoxia is a crucial factor in the progression of various tumors, including gastric cancer (GC). Circular RNAs (circRNAs) are important regulators in GC, and this study focused on researching circC6orf132 in GC progression under hypoxia.Methods:In vitro experiments were performed in GC cells under hypoxia (1% O2). CircC6orf132, microRNA-873-5p (miR-873-5p), and protein kinase AMP-activated alpha 1 catalytic subunit (PRKAA1) levels were examined by real-time polymerase chain reaction (qRT-PCR). Colony formation assay and transwell assay were used for detecting cell proliferation and migration or invasion. Glycolytic metabolism was evaluated using lactate production, glucose uptake, and adenosine triphosphate (ATP) level and extracellular acidification rate (ECAR). Western blotting was performed for determining protein expression. The target interaction was analyzed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. In vivo assay was conducted via mouse xenograft model.Results: The expression of circC6orf132 was significantly high in GC cells under hypoxia. Hypoxia-induced GC proliferation, migration, invasion, and glycolysis were reversed by silencing circC6orf132. CircC6orf132 targeted miR-873-5p; and the inhibition of circC6orf132 knockdown for the effects of hypoxia on GC cells was abrogated by miR-873-5p inhibitor. PRKAA1 was validated as a downstream gene of miR-873-5p, and miR-873-5p functioned as an anticancer molecule in GC cells under hypoxia by downregulating PRKAA1 level. CircC6orf132 could regulate PRKAA1 by sponging miR-873-5p. CircC6orf132/miR-873-5p/PRKAA1 axis could regulate GC progression under the hypoxic condition. CircC6orf132 downregulation reduced tumorigenesis in vivo through affecting the miR-873-5p/PRKAA1 axis.Conclusion: CircC6orf132 has been affirmed to promote proliferation, migration, invasion, and glycolysis in GC under hypoxia, partly by depending on the regulation of miR-873-5p/PRKAA1 axis.


2018 ◽  
Vol 23 ◽  
pp. 2515690X1878963 ◽  
Author(s):  
Pingping Zhong ◽  
Hong Yang ◽  
Shan Lin ◽  
Jun Peng ◽  
Jiumao Lin

In this study, hepatocellular carcinoma (HCC) mouse xenograft model, MTT assay, colony formation, nuclear staining, and Annexin-V/PI staining assays were used to evaluate the effect of Qingjie Fuzheng granules (QFG) on cell proliferation and apoptosis of HCC cell in vivo and in vitro. Furthermore, Western blotting was performed to detect the expression of Fas, FasL, Bcl-2, Bax, and the activation of caspase-3/-8/-9. The results showed that QFG reduced tumor weight ( P < .05) but had no effect on body weight gain in HCC mice in vivo. QFG significantly reduced HCC cell viability and attenuated cell proliferation in a dose-dependent manner ( P < .05). QFG increased the expression of Fas, FasL, and Bax ( P < .05). QFG downregulated the expression of Bcl-2 and promoted the activation of caspase-8, -9, and -3 ( P < .05). These results suggested that QFG possessed anticancer effects, and the mechanisms of action may involve the death receptor pathway and mitochondrion-dependent pathway-mediated apoptosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yong Liu ◽  
Hao Wu ◽  
Jiangpeng Jing ◽  
Huanfa Li ◽  
Shan Dong ◽  
...  

BackgroundIt has been shown that circular RNAs (circRNAs) play a vital role in the progression of glioma. Recently, hsa_circ_0001836 was found to be upregulated in glioma tissues, but the role of hsa_circ_0001836 in glioma remains unclear.MethodsEdU staining and flow cytometry assays were used to measure the viability and death of glioma cells. In addition, scanning electron microscopy (SEM) was used to observe the morphology of cells undergoing cell death.ResultsHsa_circ_0001836 expression was upregulated in U251MG and SHG-44 cells. In addition, hsa_circ_0001836 knockdown significantly reduced the viability and proliferation of U251MG and SHG-44 cells. Moreover, hsa_circ_0001836 knockdown markedly induced the pyroptosis of U251MG and SHG-44 cells, evidenced by the increased expressions of NLRP1, cleaved caspase 1 and GSDMD-N. Meanwhile, methylation specific PCR (MSP) results indicated that hsa_circ_0001836 knockdown epigenetically increased NLRP1 expression via mediating DNA demethylation of NLRP1 promoter region. Furthermore, downregulation of hsa_circ_0001836 notably induced pyroptosis and inhibited tumor growth in a mouse xenograft model of glioma.ConclusionCollectively, hsa_circ_0001836 knockdown could induce pyroptosis cell death in glioma cells in vitro and in vivo via epigenetically upregulating NLRP1 expression. These findings suggested that hsa_circ_0001836 may serve as a potential therapeutic target for the treatment of glioma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yanfei Jia ◽  
Qian Feng ◽  
Bo Tang ◽  
Xiaodong Luo ◽  
Qiang Yang ◽  
...  

Decorin exhibits inhibitory effects in tumorigenesis in various types of cancers. The clinical characteristics of 42 patients with GBM were reviewed and analyzed. Lentiviral constructs for decorin overexpression and shRNA-mediated silencing were established for U87MG cells and T98G cells, respectively. The expressions of EMT- and autophagy-associated markers were detected in GBM cell lines. The migration and invasion of the glioma cells were assayed to reflect the malignant behavior of GBM. A mouse xenograft model was used to verify the effect of decorin on autophagy in vivo. Reduced expression of decorin in glioma tissues was associated with a poor survival of the patients. Decorin overexpression suppressed cell migration, invasion and attenuated EMT phenotype in glioma cell lines. Further study indicated that decorin inhibited EMT phenotype through the induction of autophagy. The mechanisms include inhibiting the activation of c-Met/Akt/mTOR signaling and regulating the expressions of mesenchymal markers including Slug, vimentin and Twist, and epithelial marker E-cadherin. In addition, decorin overexpression in a mice model can also suppress the GBM invasion and EMT phenotype. In conclusion, decorin suppresses invasion and EMT phenotype of glioma by inducing autophagy via c-Met/Akt/mTOR axis.


Sign in / Sign up

Export Citation Format

Share Document