scholarly journals THER-06. GENOMIC AND IMMUNE CHARACTERIZATION OF TRIPLE NEGATIVE BREAST CANCER BRAIN METASTASES

2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i11-i12
Author(s):  
Benjamin Vincent ◽  
Maria Sambade ◽  
Shengjie Chai ◽  
Marni Siegel ◽  
Luz Cuaboy ◽  
...  

Abstract INTRODUCTION: Approximately 50% of patients with metastatic triple negative breast cancer (TNBC) will develop brain metastases (BM). Routinely treated with radiotherapy and/or surgery, survival is generally less than one year. There are no approved systemic therapies to treat TNBC BM. We characterized the genomic and immune landscape of TNBC BM to foster the development of effective brain permeable anti-cancer agents, including immunotherapy. EXPERIMENTAL PROCEDURES: A clinically-annotated BCBM biobank of archival tissues was created under IRB approval. DNA (tumor/normal) and RNA (tumor) were extracted from TNBC primaries and BM; whole exome (WES) and RNA sequencing (RNASeq) was performed. Mutations were determined from WES as those co-identified by two variant callers (Strelka|Cadabra). Immune gene signature expression, molecular subtype identification, and T cell receptor repertoires were inferred from RNAseq. RESULTS: 32 TNBC patient tissues (14 primaries, 18 BCBM, 6 primary-BCBM matched), characterized as basal-like by PAM50, were analyzed. Top exome mutation calls included ten genes in ≥19% of BCBMs including TP53, ATM, and PIK3R1, and four genes in ≥18% of primaries including TP53 and PIK3R1. Many immune gene signatures were lower in BM compared to primaries including B cell, dendritic cell, regulatory T cell, and IgG cluster (p< 0.05). A signature of PD-1 inhibition responsiveness was higher in BM compared with primaries (p< 0.05). BCBM T cell receptor repertoires showed higher evenness and lower read count (both p < 0.01) compared to primaries. CONCLUSIONS: TNBC BM compared to primaries that metastasize to the brain show lower immune gene signature expression, higher PD-1 inhibition response signature expression, and T cell receptor repertoire features less characteristic of an active antigen-specific response. Mutations common to TNBC BM and primaries include TP53 and PIK3R1. Given that non-BCBM (i.e. lung and melanoma) show response to checkpoint inhibitors, these findings collectively support further study of immunotherapy for TNBC BM.

2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer (TNBC) patients based on survival at time of analysis: dead or alive. TRAJ27, TRDC, TRDJ1, and TRGV1 emerged as among the most differentially expressed genes, transcriptome-wide, when comparing the primary tumors of triple negative breast cancer patients dead or alive. TRAJ27, TRDC, TRDJ1, and TRGV1 were all present at significantly higher quantities in the tumors of TNBC patients alive. Differential expression of TCR genes TRAJ27, TRDC, TRDJ1, and TRGV1 may be of relevance in understanding the etiology or progression of triple negative breast cancer.


2021 ◽  
Vol 85 ◽  
pp. 104664
Author(s):  
Mohan Li ◽  
Kexin Zheng ◽  
Shiliang Ma ◽  
Pengpeng Hu ◽  
Bo Yuan ◽  
...  

2021 ◽  
Vol 360 ◽  
pp. 104262
Author(s):  
Pengxiang Yang ◽  
Xingjian Cao ◽  
Huilong Cai ◽  
Panfeng Feng ◽  
Xiang Chen ◽  
...  

Oncotarget ◽  
2015 ◽  
Vol 6 (28) ◽  
pp. 25356-25367 ◽  
Author(s):  
Claudia Paret ◽  
Petra Simon ◽  
Kirsten Vormbrock ◽  
Christian Bender ◽  
Anne Kölsch ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5590
Author(s):  
Alyssa Vito ◽  
Nader El-Sayes ◽  
Omar Salem ◽  
Yonghong Wan ◽  
Karen L. Mossman

The era of immunotherapy has seen an insurgence of novel therapies driving oncologic research and the clinical management of the disease. We have previously reported that a combination of chemotherapy (FEC) and oncolytic virotherapy (oHSV-1) can be used to sensitize otherwise non-responsive tumors to immune checkpoint blockade and that tumor-infiltrating B cells are required for the efficacy of our therapeutic regimen in a murine model of triple-negative breast cancer. In the studies herein, we have performed gene expression profiling using microarray analyses and have investigated the differential gene expression between tumors treated with FEC + oHSV-1 versus untreated tumors. In this work, we uncovered a therapeutically driven switch of the myeloid phenotype and a gene signature driving increased tumor cell killing.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A644-A644
Author(s):  
Anita Mehta ◽  
Madeline Townsend ◽  
Madisson Oliwa ◽  
Patrice Lee ◽  
Nicholas Saccomano ◽  
...  

BackgroundPoly(ADP-ribose) polymerase inhibitors (PARPi) have improved the outcomes of BRCA-associated breast cancer; however, treatment responses are often not durable. Our preclinical studies demonstrated that PARPi activates the cGAS/STING pathway and recruitment of anti-tumor CD8+ T-cells that are required for tumor clearance [1]. These studies contributed to development of clinical trials testing PARPi plus immune checkpoint blockade (ICB). Unfortunately, early phase trials of PARPi + ICB have not yet suggested efficacy will be superior to PARPi monotherapy. Lack of demonstrated clinical synergy between PARPi + ICB underscores the need to study the tumor microenvironment (TME) during PARPi therapy to identify optimal strategies to enhance T-cell activation. We recently showed that PARPi induces CSF-1R+ suppressive tumor associated macrophages (TAMs) that restrict antitumor immune responses, contributing to PARPi resistance [2]. Removing TAMs with anti-CSF-1R therapy in combination with PARPi significantly enhanced overall survival (OS) compared to PARPi monotherapy in preclinical models [2]. Here, we investigate how modulating TAMs can enhance PARPi + ICB.MethodsMice bearing BRCA1-deficient TNBC (K14-Cre;Brca1f/f;p53f/f) tumors were treated for 98 days with PARPi (Talazoparib) ± small molecule inhibitor of CSF-1R (ARRAY-382; CSF-1Ri) ± anti-PD-1 and then followed for survival. Flow cytometry was employed to elucidate changes in the TME after treatment.ResultsPARPi conferred a significant survival advantage over vehicle treated mice (median OS 33 v. 14 days; p=0.0034) and 2/8 PARPi-treated mice experienced complete tumor clearance at day 98. PARPi + CSF-1Ri treated mice (median OS 140 days) remarkably cleared 7/10 tumors by day 98. The addition of anti-PD-1 to PARPi did not enhance OS compared to PARPi monotherapy. The triple combination of anti-PD-1 + PARPi + CSF-1Ri has not yet significantly enhanced the median OS compared to PARPi + CSF-1Ri (ongoing; 168 v. 140 days); nor did it increase clearance of tumor by day 98 (7/10). However, the triple combination led to superior long term tumor clearance. At day 161 the triple combination exhibited 5/10 tumor free mice compared to 2/10 treated with PARPi + CSF-1Ri. To elucidate how CSR-1Ri enhanced PARPi + ICB responses, flow cytometry was performed and revealed increased expression of the co-stimulatory molecule CD80, reduced tissue resident macrophages (CX3CR1+) and lower CSF-1R expression compared to PARPi + ICB.ConclusionsThese data suggest that targeting immunosuppressive macrophages may induce a favorable anti-tumor immune response and enhance responses to PARPi plus ICB. We are currently evaluating the adaptive immune response in this context.ReferencesPantelidou, C., et al., PARP inhibitor efficacy depends on CD8+ T cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discovery, 2019: p. CD-18-1218.Mehta, A.K., et al., Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat Cancer, 2021. 2(1): p. 66–82.


Sign in / Sign up

Export Citation Format

Share Document