scholarly journals 590. Vancomycin Infusion: Algorithmic Analysis of Unstructured Real-World Data Captured from Automated Infusion Devices

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S358-S358
Author(s):  
David L Bostick ◽  
Kalvin Yu ◽  
Cynthia Yamaga ◽  
Ann Liu-Ferrara ◽  
Didier Morel ◽  
...  

Abstract Background Large scale research on antimicrobial usage in real-world populations traditionally does not consist of infusion data. With automation, detailed infusion events are captured in device systems, providing opportunities to harness them for patient safety studies. However, due to the unstructured nature of infusion data, the scale-up of data ingestion, cleansing, and processing is challenging. Figure 1. Illustration of dosing complexity Methods We applied algorithmic techniques to quantitate and visualize vancomycin administration data captured in real-time by automated infusion devices from 3 acute care hospitals. The device data included timestamped infusion events – infusion started, paused, restarted, alarmed, and stopped. We used time density-based segmentation algorithms to depict infusion sessions as bursts of event activity. We examined clinical interpretability of the cluster-defined sessions in defining infusion events, dosing intensity, and duration. Results The algorithms identified 13,339 vancomycin infusion sessions from 2,417 unique patients (mean = 5.5 sessions per patient). Clustering captured vancomycin infusion sessions consistently with correct event labels in >98% of cases. It disentangled ambiguity associated with unexpected events (e.g. multiple stopped/started events within a single infusion session). Segmentation of vancomycin infusion events on an example patient timeline is illustrated in Figure 1. The median duration of infusion sessions was 1.55 (1st, 3rd quartiles: 1.14, 2.02) hours, demonstrating clinical plausibility. Conclusion Passively captured vancomycin administration data from automated infusion device systems provide ramifications for real-time bed-side patient care practice. With large volume of data, temporal event segmentation can be an efficient approach to generate clinically interpretable insights. This method scales up accuracy and consistency in handling longitudinal dosing data. It can enable real-time population surveillance and patient-specific clinical decision support for large patient populations. Better understanding of infusion data may also have implications for vancomycin pharmacokinetic dosing. Disclosures David L. Bostick, PhD, Becton, Dickinson and Co. (Employee) Kalvin Yu, MD, Becton, Dickinson and Company (Employee)GlaxoSmithKline plc. (Other Financial or Material Support, Funding) Cynthia Yamaga, PharmD, BD (Employee) Ann Liu-Ferrara, PhD, Becton, Dickinson and Co. (Employee) Didier Morel, PhD, Becton, Dickinson and Co. (Employee) Ying P. Tabak, PhD, Becton, Dickinson and Co. (Employee)

2021 ◽  
Author(s):  
◽  
Timothy Sherry

<p>An online convolutive blind source separation solution has been developed for use in reverberant environments with stationary sources. Results are presented for simulation and real world data. The system achieves a separation SINR of 16.8 dB when operating on a two source mixture, with a total acoustic delay was 270 ms. This is on par with, and in many respects outperforms various published algorithms [1],[2]. A number of instantaneous blind source separation algorithms have been developed, including a block wise and recursive ICA algorithm, and a clustering based algorithm, able to obtain up to 110 dB SIR performance. The system has been realised in both Matlab and C, and is modular, allowing for easy update of the ICA algorithm that is the core of the unmixing process.</p>


2009 ◽  
Vol 103 (1) ◽  
pp. 62-68
Author(s):  
Kathleen Cage Mittag ◽  
Sharon Taylor

Using activities to create and collect data is not a new idea. Teachers have been incorporating real-world data into their classes since at least the advent of the graphing calculator. Plenty of data collection activities and data sets exist, and the graphing calculator has made modeling data much easier. However, the authors were in search of a better physical model for a quadratic. We wanted students to see an actual parabola take shape in real time and then explore its characteristics, but we could not find such a hands-on model.


2021 ◽  
Vol 36 ◽  
pp. 153331752110624
Author(s):  
Mishah Azhar ◽  
Lawrence Fiedler ◽  
Patricio S. Espinosa ◽  
Charles H. Hennekens

We reviewed the evidence on proton pump inhibitors (PPIs) and dementia. PPIs are among the most widely utilized drugs in the world. Dementia affects roughly 5% of the population of the United States (US) and world aged 60 years and older. With respect to PPIs and dementia, basic research has suggested plausible mechanisms but descriptive and analytic epidemiological studies are not inconsistent. In addition, a single large-scale randomized trial showed no association. When the evidence is incomplete, it is appropriate for clinicians and researchers to remain uncertain. Regulatory or public health authorities sometimes need to make real-world decisions based on real-world data. When the evidence is complete, then the most rational judgments for individual patients the health of the general public are possible At present, the evidence on PPIs and dementia suggests more reassurance than alarm. Further large-scale randomized evidence is necessary to do so.


2020 ◽  
Author(s):  
Dan E. Webster ◽  
Meghasyam Tummalacherla ◽  
Michael Higgins ◽  
David Wing ◽  
Euan Ashley ◽  
...  

AbstractExpanding access to precision medicine will increasingly require that patient biometrics can be measured in remote care settings. VO2max, the maximum volume of oxygen usable during intense exercise, is one of the most predictive biometric risk factors for cardiovascular disease, frailty, and overall mortality.1,2 However, VO2max measurements are rarely performed in clinical care or large-scale epidemiologic studies due to the high cost, participant burden, and need for specialized laboratory equipment and staff.3,4 To overcome these barriers, we developed two smartphone sensor-based protocols for estimating VO2max: a generalization of a 12-minute run test (12-MRT) and a submaximal 3-minute step test (3-MST). In laboratory settings, Lins concordance for these two tests relative to gold standard VO2max testing was pc=0.66 for 12-MRT and pc=0.61 for 3-MST. Relative to “silver standards”5 (Cooper/Tecumseh protocols), concordance was pc=0.96 and pc=0.94, respectively. However, in remote settings, 12-MRT was significantly less concordant with gold standard (pc=0.25) compared to 3-MST (pc=0.61), though both had high test-retest reliability (ICC=0.88 and 0.86, respectively). These results demonstrate the importance of real-world evidence for validation of digital health measurements. In order to validate 3-MST in a broadly representative population in accordance with the All of Us Research Program6 for which this measurement was developed, the camera-based heart rate measurement was investigated for potential bias. No systematic measurement error was observed that corresponded to skin pigmentation level, operating system, or cost of the phone used. The smartphone-based 3-MST protocol, here termed Heart Snapshot, maintained fidelity across demographic variation in age and sex, across diverse skin pigmentation, and between iOS and Android implementations of various smartphone models. The source code for these smartphone measurements, along with the data used to validate them,6 are openly available to the research community.


Author(s):  
Dazhong Shen ◽  
Hengshu Zhu ◽  
Chen Zhu ◽  
Tong Xu ◽  
Chao Ma ◽  
...  

The job interview is considered as one of the most essential tasks in talent recruitment, which forms a bridge between candidates and employers in fitting the right person for the right job. While substantial efforts have been made on improving the job interview process, it is inevitable to have biased or inconsistent interview assessment due to the subjective nature of the traditional interview process. To this end, in this paper, we propose a novel approach to intelligent job interview assessment by learning the large-scale real-world interview data. Specifically, we develop a latent variable model named Joint Learning Model on Interview Assessment (JLMIA) to jointly model job description, candidate resume and interview assessment. JLMIA can effectively learn the representative perspectives of different job interview processes from the successful job application records in history. Therefore, a variety of applications in job interviews can be enabled, such as person-job fit and interview question recommendation. Extensive experiments conducted on real-world data clearly validate the effectiveness of JLMIA, which can lead to substantially less bias in job interviews and provide a valuable understanding of job interview assessment.


2020 ◽  
Author(s):  
Zhaoyi Chen ◽  
Hansi Zhang ◽  
Yi Guo ◽  
Thomas J George ◽  
Mattia Prosperi ◽  
...  

AbstractClinical trials are essential but often have high financial costs and long execution time. Trial simulation using real world data (RWD) could potentially provide insights on a treatment’s efficacy and safety before running a large-scale trial. In this work, we explored the feasibility of using RWD from a large clinical data research network to simulate a randomized controlled trial of Alzheimer’s disease considering two different scenarios: an one-arm simulation of the standard-of-care control arm; and a two-arm simulation comparing treatment safety between the intervention and control arms with proper patient matching algorithms. We followed original trial’s design and addressed some key questions, including how to translate trial criteria to database queries and establish measures of safety (i.e., serious adverse events) from RWD. Our simulation generated results comparable to the original trial, but also exposed gaps in both trial simulation methodology and the generalizability issue of clinical trials.


Author(s):  
Yaron Kinar ◽  
Alon Lanyado ◽  
Avi Shoshan ◽  
Rachel Yesharim ◽  
Tamar Domany ◽  
...  

AbstractBackgroundThe global pandemic of COVID-19 has challenged healthcare organizations and caused numerous deaths and hospitalizations worldwide. The need for data-based decision support tools for many aspects of controlling and treating the disease is evident but has been hampered by the scarcity of real-world reliable data. Here we describe two approaches: a. the use of an existing EMR-based model for predicting complications due to influenza combined with available epidemiological data to create a model that identifies individuals at high risk to develop complications due to COVID-19 and b. a preliminary model that is trained using existing real world COVID-19 data.MethodsWe have utilized the computerized data of Maccabi Healthcare Services a 2.3 million member state-mandated health organization in Israel. The age and sex matched matrix used for training the XGBoost ILI-based model included, circa 690,000 rows and 900 features. The available dataset for COVID-based model included a total 2137 SARS-CoV-2 positive individuals who were either not hospitalized (n = 1658), or hospitalized and marked as mild (n = 332), or as having moderate (n = 83) or severe (n = 64) complications.FindingsThe AUC of our models and the priors on the 2137 COVID-19 patients for predicting moderate and severe complications as cases and all other as controls, the AUC for the ILI-based model was 0.852[0.824–0.879] for the COVID19-based model – 0.872[0.847–0.879].InterpretationThese models can effectively identify patients at high-risk for complication, thus allowing optimization of resources and more focused follow up and early triage these patients if once symptoms worsen.FundingThere was no funding for this studyResearch in contextEvidence before this studyWe have search PubMed for coronavirus[MeSH Major Topic] AND the following MeSH terms: risk score, predictive analytics, algorithm, predictive analytics. Only few studies were found on predictive analytics for developing COVID19 complications using real-world data. Many of the relevant works were based on self-reported information and are therefore difficult to implement at large scale and without patient or physician participation.Added value of this studyWe have described two models for assessing risk of COVID-19 complications and mortality, based on EMR data. One model was derived by combining a machine-learning model for influenza-complications with epidemiological data for age and sex dependent mortality rates due to COVID-19. The other was directly derived from initial COVID-19 complications data.Implications of all the available evidenceThe developed models may effectively identify patients at high-risk for developing COVID19 complications. Implementing such models into operational data systems may support COVID-19 care workflows and assist in triaging patients.


2020 ◽  
Vol 34 (02) ◽  
pp. 1369-1377
Author(s):  
Elizabeth Bondi ◽  
Hoon Oh ◽  
Haifeng Xu ◽  
Fei Fang ◽  
Bistra Dilkina ◽  
...  

Motivated by real-world deployment of drones for conservation, this paper advances the state-of-the-art in security games with signaling. The well-known defender-attacker security games framework can help in planning for such strategic deployments of sensors and human patrollers, and warning signals to ward off adversaries. However, we show that defenders can suffer significant losses when ignoring real-world uncertainties despite carefully planned security game strategies with signaling. In fact, defenders may perform worse than forgoing drones completely in this case. We address this shortcoming by proposing a novel game model that integrates signaling and sensor uncertainty; perhaps surprisingly, we show that defenders can still perform well via a signaling strategy that exploits uncertain real-time information. For example, even in the presence of uncertainty, the defender still has an informational advantage in knowing that she has or has not actually detected the attacker; and she can design a signaling scheme to “mislead” the attacker who is uncertain as to whether he has been detected. We provide theoretical results, a novel algorithm, scale-up techniques, and experimental results from simulation based on our ongoing deployment of a conservation drone system in South Africa.


Sign in / Sign up

Export Citation Format

Share Document