scholarly journals The European starling (Sturnus vulgaris) shows signs of NREM sleep homeostasis but has very little REM sleep and no REM sleep homeostasis

SLEEP ◽  
2019 ◽  
Vol 43 (6) ◽  
Author(s):  
Sjoerd J van Hasselt ◽  
Maria Rusche ◽  
Alexei L Vyssotski ◽  
Simon Verhulst ◽  
Niels C Rattenborg ◽  
...  

Abstract Most of our knowledge about the regulation and function of sleep is based on studies in a restricted number of mammalian species, particularly nocturnal rodents. Hence, there is still much to learn from comparative studies in other species. Birds are interesting because they appear to share key aspects of sleep with mammals, including the presence of two different forms of sleep, i.e. non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. We examined sleep architecture and sleep homeostasis in the European starling, using miniature dataloggers for electroencephalogram (EEG) recordings. Under controlled laboratory conditions with a 12:12 h light–dark cycle, the birds displayed a pronounced daily rhythm in sleep and wakefulness with most sleep occurring during the dark phase. Sleep mainly consisted of NREM sleep. In fact, the amount of REM sleep added up to only 1~2% of total sleep time. Animals were subjected to 4 or 8 h sleep deprivation to assess sleep homeostatic responses. Sleep deprivation induced changes in subsequent NREM sleep EEG spectral qualities for several hours, with increased spectral power from 1.17 Hz up to at least 25 Hz. In contrast, power below 1.17 Hz was decreased after sleep deprivation. Sleep deprivation also resulted in a small compensatory increase in NREM sleep time the next day. Changes in EEG spectral power and sleep time were largely similar after 4 and 8 h sleep deprivation. REM sleep was not noticeably compensated after sleep deprivation. In conclusion, starlings display signs of NREM sleep homeostasis but the results do not support the notion of important REM sleep functions.

SLEEP ◽  
2019 ◽  
Vol 42 (9) ◽  
Author(s):  
Nicola Hanley ◽  
Jerome Paulissen ◽  
Brian J Eastwood ◽  
Gary Gilmour ◽  
Sally Loomis ◽  
...  

Abstract Increasing vigilance without incurring the negative consequences of extended wakefulness such as daytime sleepiness and cognitive impairment is a major challenge in treating many sleep disorders. The present work compares two closely related mGluR2/3 antagonists LY3020371 and LY341495 with two well-known wake-promoting compounds caffeine and d-amphetamine. Sleep homeostasis properties were explored in male Wistar rats by manipulating levels of wakefulness via (1) physiological sleep restriction (SR), (2) pharmacological action, or (3) a combination of these. A two-phase nonlinear mixed-effects model combining a quadratic and exponential function at an empirically estimated join point allowed the quantification of wake-promoting properties and any subsequent sleep rebound. A simple response latency task (SRLT) following SR assessed functional capacity of sleep-restricted animals treated with our test compounds. Caffeine and d-amphetamine increased wakefulness with a subsequent full recovery of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep and were unable to fully reverse SR-induced impairments in SRLT. In contrast, LY3020371 increased wakefulness with no subsequent elevation of NREM sleep, delta power, delta energy, or sleep bout length and count, yet REM sleep recovered above baseline levels. Prior sleep pressure obtained using an SR protocol had no impact on the wake-promoting effect of LY3020371 and NREM sleep rebound remained blocked. Furthermore, LY341495 increased functional capacity across SRLT measures following SR. These results establish the critical role of glutamate in sleep homeostasis and support the existence of independent mechanisms for NREM and REM sleep homeostasis.


1994 ◽  
Vol 77 (4) ◽  
pp. 1811-1818 ◽  
Author(s):  
C. P. O'Donnell ◽  
E. D. King ◽  
A. R. Schwartz ◽  
P. L. Smith ◽  
J. L. Robotham

The effect of sleep deprivation on sleep architecture and respiratory responses to repetitive airway obstruction during sleep was investigated in four chronically instrumented tracheostomized dogs during 12-h nocturnal experiments. A 24-h period of prior sleep deprivation increased (P < 0.05) the rate at which airway obstruction could be induced from 20 +/- 3 (SE) to 37 +/- 10 times/h compared with non-sleep-deprived dogs. During non-rapid-eye-movement sleep the duration of obstruction, minimum arterial hemoglobin saturation, and peak negative inspiratory effort at arousal were 20.5 +/- 1.0 s, 91.7 +/- 0.5%, and 28.4 +/- 1.8 mmHg, respectively, in non-sleep-deprived dogs. Sleep deprivation increased (P < 0.01) the duration of obstruction to 28.0 +/- 0.9 s, worsened (P < 0.05) the minimal arterial hemoglobin desaturation to 85.4 + 3.1%, and increased (P < 0.025) the peak negative inspiratory effort at arousal to 36.1 +/- 1.6 mmHg. Sleep deprivation also caused increases (P < 0.025) in total sleep time, rapid-eye-movement (REM) sleep time, and percentage of time in REM sleep in a 2-h recovery period without airway obstruction at the end of the study. We conclude that airway obstruction in the sleeping dog can reproduce the disturbances in sleep architecture and respiration that occur in obstructive sleep apnea and that prior sleep deprivation will increase apnea severity, degree of somnolence, and REM sleep rebound independent of change in upper airway collapsibility.


2016 ◽  
Vol 3 (10) ◽  
pp. 160201 ◽  
Author(s):  
Peter Achermann ◽  
Thomas Rusterholz ◽  
Roland Dürr ◽  
Thomas König ◽  
Leila Tarokh

Sleep is characterized by a loss of consciousness, which has been attributed to a breakdown of functional connectivity between brain regions. Global field synchronization (GFS) can estimate functional connectivity of brain processes. GFS is a frequency-dependent measure of global synchronicity of multi-channel EEG data. Our aim was to explore and extend the hypothesis of disconnection during sleep by comparing GFS spectra of different vigilance states. The analysis was performed on eight healthy adult male subjects. EEG was recorded during a baseline night, a recovery night after 40 h of sustained wakefulness and at 3 h intervals during the 40 h of wakefulness. Compared to non-rapid eye movement (NREM) sleep, REM sleep showed larger GFS values in all frequencies except in the spindle and theta bands, where NREM sleep showed a peak in GFS. Sleep deprivation did not affect GFS spectra in REM and NREM sleep. Waking GFS values were lower compared with REM and NREM sleep except for the alpha band. Waking alpha GFS decreased following sleep deprivation in the eyes closed condition only. Our surprising finding of higher synchrony during REM sleep challenges the view of REM sleep as a desynchronized brain state and may provide insight into the function of REM sleep.


2012 ◽  
Vol 302 (5) ◽  
pp. R533-R540 ◽  
Author(s):  
Irwin Feinberg ◽  
Nicole M. Davis ◽  
Evan de Bie ◽  
Kevin J. Grimm ◽  
Ian G. Campbell

We recorded sleep electroencephalogram longitudinally across ages 9–18 yr in subjects sleeping at home. Recordings were made twice yearly on 4 consecutive nights: 2 nights with the subjects maintaining their ongoing school-night schedules, and 2 nights with time in bed extended to 12 h. As expected, school-night total sleep time declined with age. This decline was entirely produced by decreasing non-rapid eye movement (NREM) sleep. Rapid eye movement (REM) sleep durations increased slightly but significantly. NREM and REM sleep durations also exhibited different age trajectories when sleep was extended. Both durations exceeded those on school-night schedules. However, the elevated NREM duration did not change with age, whereas REM durations increased significantly. We interpret the adolescent decline in school-night NREM duration in relation to our hypothesis that NREM sleep reverses changes produced in plastic brain systems during waking. The “substrate” produced during waking declines across adolescence, because synaptic elimination decreases the intensity (metabolic rate) of waking brain activity. Declining substrate reduces both NREM intensity (i.e., delta power) and NREM duration. The absence of a decline in REM sleep duration on school-night sleep and its age-dependent increase in extended sleep pose new challenges to understanding its physiological role. Whatever their ultimate explanation, these robust findings demonstrate that the two physiological states of human sleep respond differently to the maturational brain changes of adolescence. Understanding these differences should shed new light on both brain development and the functions of sleep.


1992 ◽  
Vol 72 (1) ◽  
pp. 100-109 ◽  
Author(s):  
J. B. Neilly ◽  
N. B. Kribbs ◽  
G. Maislin ◽  
A. I. Pack

To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.


1989 ◽  
Vol 155 (S6) ◽  
pp. 61-65 ◽  
Author(s):  
J. M. Monti

The effect of moclobemide, a short-acting, reversible, preferential monoamine oxidase-A inhibitor in a 4-week therapeutic trial, on the sleep of ten depressed patients, was assessed by polysomnographic recordings. Compared with their time on placebo, patients receiving moclobemide showed improved sleep continuity, particularly during the intermediate and late stages of drug administration. The total increase in sleep time was comprised of larger amounts of stage 2 non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Withdrawal of moclobemide was followed by a further increase of REM sleep, although values did not surpass those sometimes observed in adults with normal sleep. In these patients, the symptoms of depression were rated as being significantly improved during the study period.


2020 ◽  
Vol 11 ◽  
Author(s):  
Daniela Dudysová ◽  
Karolina Janků ◽  
Michal Šmotek ◽  
Elizaveta Saifutdinova ◽  
Jana Kopřivová ◽  
...  

Serotonergic agonist psilocybin is a psychedelic with antidepressant potential. Sleep may interact with psilocybin’s antidepressant properties like other antidepressant drugs via induction of neuroplasticity. The main aim of the study was to evaluate the effect of psilocybin on sleep architecture on the night after psilocybin administration. Regarding the potential antidepressant properties, we hypothesized that psilocybin, similar to other classical antidepressants, would reduce rapid eye movement (REM) sleep and prolong REM sleep latency. Moreover, we also hypothesized that psilocybin would promote slow-wave activity (SWA) expression in the first sleep cycle, a marker of sleep-related neuroplasticity. Twenty healthy volunteers (10 women, age 28–53) underwent two drug administration sessions, psilocybin or placebo, in a randomized, double-blinded design. Changes in sleep macrostructure, SWA during the first sleep cycle, whole night EEG spectral power across frequencies in non-rapid eye movement (NREM) and REM sleep, and changes in subjective sleep measures were analyzed. The results revealed prolonged REM sleep latency after psilocybin administration and a trend toward a decrease in overall REM sleep duration. No changes in NREM sleep were observed. Psilocybin did not affect EEG power spectra in NREM or REM sleep when examined across the whole night. However, psilocybin suppressed SWA in the first sleep cycle. No evidence was found for sleep-related neuroplasticity, however, a different dosage, timing, effect on homeostatic regulation of sleep, or other mechanisms related to antidepressant effects may play a role. Overall, this study suggests that potential antidepressant properties of psilocybin might be related to changes in sleep.


2015 ◽  
Author(s):  
Sudhansu Chokroverty

Recent research has generated an enormous fund of knowledge about the neurobiology of sleep and wakefulness. Sleeping and waking brain circuits can now be studied by sophisticated neuroimaging techniques that map different areas of the brain during different sleep states and stages. Although the exact biologic functions of sleep are not known, sleep is essential, and sleep deprivation leads to impaired attention and decreased performance. Sleep is also believed to have restorative, conservative, adaptive, thermoregulatory, and consolidative functions. This review discusses the physiology of sleep, including its two independent states, rapid eye movement (REM) and non–rapid eye movement (NREM) sleep, as well as functional neuroanatomy, physiologic changes during sleep, and circadian rhythms. The classification and diagnosis of sleep disorders are discussed generally. The diagnosis and treatment of the following disorders are described: obstructive sleep apnea syndrome, narcolepsy-cataplexy sydrome, idiopathic hypersomnia, restless legs syndrome (RLS) and periodic limb movements in sleep, circadian rhythm sleep disorders, insomnias, nocturnal frontal lobe epilepsy, and parasomnias. Sleep-related movement disorders and the relationship between sleep and psychiatric disorders are also discussed. Tables describe behavioral and physiologic characteristics of states of awareness, the international classification of sleep disorders, common sleep complaints, comorbid insomnia disorders, causes of excessive daytime somnolence, laboratory tests to assess sleep disorders, essential diagnostic criteria for RLS and Willis-Ekbom disease, and drug therapy for insomnia. Figures include polysomnographic recording showing wakefulness in an adult; stage 1, 2, and 3 NREM sleep in an adult; REM sleep in an adult; a patient with sleep apnea syndrome; a patient with Cheyne-Stokes breathing; a patient with RLS; and a patient with dream-enacting behavior; schematic sagittal section of the brainstem of the cat; schematic diagram of the McCarley-Hobson model of REM sleep mechanism; the Lu-Saper “flip-flop” model; the Luppi model to explain REM sleep mechanism; and a wrist actigraph from a man with bipolar disorder. This review contains 14 highly rendered figures, 8 tables, 115 references, and 5 MCQs.


Sign in / Sign up

Export Citation Format

Share Document