scholarly journals First report of stem rust, caused by Puccinia graminis, and crown rust, caused by Puccinia coronata var. avenae f. sp. avenae, on tall fescue (Festuca arundinacea) in Georgia, USA

Plant Disease ◽  
2021 ◽  
Author(s):  
Suraj Sapkota ◽  
Paul Raymer ◽  
Alfredo Martinez-Espinoza ◽  
Bochra Amina Bahri

Stem rust, caused by Puccinia graminis, and crown rust, caused by P. coronata, are common rust diseases on cool-season grasses (Karakkat et al. 2018), for which long-distance spore dispersal was recorded in northern US (Harder and Haber 1992). During the summers of 2019 and 2020, severe infection of stem rust and crown rust was observed on > 60% of tall fescue (Festuca arundinacea) germplasm plants in a breeding nursery located at the University of Georgia, Griffin GA. Rust-infected leaves first presented uredinia pustules, then black telia towards the end of the season. The uredinia pustules of stem rust and crown rust were brick-red and, yellow and arranged along the host veins, respectively. The urediniospores were one-celled, round to ovoid and measured from 20.75±2.44 μm (crown rust) to 27±3.60 μm long (stem rust). The teliospores were two-celled and measured from 45.75±10.14 μm (stem rust) to 51.60±4.0 μm long (crown rust) (Leonard et al. 2005; Cummins 1971). Urediniospores of both rusts were collected from infected plants in the field in April of 2020 using a Piston vacuum pump (Welch by Gardner Denver Ltd.) and stored at -80 °C in 1.5 ml Eppendorf tubes. Genomic DNA was extracted by grinding the urediniospores in liquid nitrogen using mortar and pestle, followed by the cetyltrimethylammonium bromide method (Doyle and Doyle 1987). The internal transcribed spacer (ITS) region of the ribosomal DNA was amplified using the ITS5-ITS4 primers (White et al. 1990). BLASTn and phylogenetic analyses revealed that the sequence of stem rust (GenBank acc. no. MW430963) and crown rust (GenBank acc. no. MW431324) pathogens had >99% similarity with P. graminis (GenBank acc. no. HQ317538) and P. coronata var. avenae f. sp. avenae (clade V; Liu and Hambleton 2013) (GenBank acc. no. EU014044), respectively. Pathogenicity tests were conducted on the tall fescue cultivar ‘Bandit’. For each rust, 12 pots (10 cm × 10 cm) were planted, each containing 13 seeds in a Sungro professional growing mix soil (Sun Gro Horticulture Distribution Inc.). The plant materials were kept in the greenhouse at 20°C/ 25°C (night/day),15-hrs of light, and watered twice a week for 4-weeks. Urediniospores were recovered from -80°C and allowed to acclimate at room temperature for 1 h. For each rust, 20 ml of suspension containing 1×105 urediniospores ml−1 and 5 μl of Tween-twenty (Agdia Inc. Elkhart, IN) were used to inoculate 6 pots; while 6 control pots were sprayed with sterile water. After inoculation, plants were allowed to dry for 1 h and then transferred to a dark chamber at 20°C and 90% of humidity for 12-15 h. At 10-days post inoculation, all inoculated plants developed rust symptoms identical to those observed in the field, whereas control plants had no symptoms. Stem and crown rust pathogens were re-isolated from the artificially inoculated tall fescue plants. Based on form, size, color and numbers of cells forming the spores, a 1947 Festuca elatior specimen from Georgia mentioning Puccinia coronata (Hanlin 1966), held at the Julian H. Miller Mycological Herbarium (Catalog No. GAM00013162), was discarded as an earlier record of P. coronata var. avenae and could have been misdiagnosed. Due to the fragile integrity of the original infected plant sample as well as the incipient infection, DNA identification was unsuccessful. To our knowledge, this is the first morphological, genetic and taxonomic report of P. graminis and P. coronata var. avenae f. sp. avenae on tall fescue in Georgia, USA

Plant Disease ◽  
2001 ◽  
Vol 85 (10) ◽  
pp. 1085-1090 ◽  
Author(s):  
B. D. van Niekerk ◽  
Z. A. Pretorius ◽  
W. H. P. Boshoff

Although crown rust (caused by Puccinia coronata f. sp. avenae) and stem rust (caused by Puccinia graminis f. sp. avenae) are generally considered to be the most widespread and damaging diseases of oat (Avena spp.) in South Africa, pathogenic variability has never been studied. During 1997 and 1998, one dominant crown rust pathotype (SBLL) was identified with virulence to resistance genes Pc40, Pc45, Pc46, Pc51, and Pc54. Four other pathotypes (SGLL, PBBB+Pc35, SDQL, and JBBM+Pc35), occurring at low frequencies and further rendering resistance genes Pc35, Pc39, Pc48, Pc50, Pc52, and Pc64 ineffective, were also detected. Resistance gene Pc40 was postulated in Wisconsin X1588-2; Pc51 in Euro, Maluti, Overberg, OX88I 075-106, Perdeberg, and Swartberg; and Pc39 was confirmed in the cultivar Fidler. During the same period, four stem rust pathotypes were identified with virulence to resistance genes Pg1, Pg2, Pg4, Pg8, Pg9, Pg12,Pg15, and Pga. Resistance gene Pga was postulated in Alpha, OX87 080-1, OX88I 075-106, Sederberg, and W94/4; Pg2 and/or Pg4 in Euro, Perdeberg, Potberg, and Swartberg; and Pg9 in Pallinup and Victorian. Collections of wild oat species Avena fatua, A. byzantina, A. sterilis, and A. barbata were susceptible to all crown rust patho-types, while the four stem rust pathotypes were virulent on all species except A. barbata.


Plant Disease ◽  
1999 ◽  
Vol 83 (11) ◽  
pp. 1058-1062 ◽  
Author(s):  
W. F. Pfender ◽  
S. S. Vollmer

The Willamette Valley in Oregon is a major seed production area for cool-season grasses. Puccinia graminis subsp. graminicola survives over winter on its hosts as uredinial infections and causes epidemics of stem rust, the area's major disease on perennial ryegrass and tall fescue. To determine the possible importance of freezing temperature on rust survival, infected plants taken from the field were subjected to controlled freezing across a range of temperatures representative of those that can occur in the region. After treatment, plants were placed in a warm greenhouse, and the number of actively sporulating pustules was recorded at 3-day intervals for 21 days. The pathogen responded similarly to freezing treatments whether in perennial ryegrass or tall fescue. Compared with the nontreated standard, there was no significant reduction in pustule number after exposure to -3 or -6°C. Exposure of infected plants to -10°C caused a 75 to 90% reduction in rust survival, and exposure to -13°C killed all rust infections in tall fescue and over 99% in perennial ryegrass. The decline in rust survival with temperature was slightly steeper for perennial ryegrass than for tall fescue. A higher absolute number of infections in perennial ryegrass than in tall fescue resulted in higher numbers of surviving infections on perennial ryegrass. Survival of rust infections appeared to be primarily a function of host tissue survival. Between 1960 and 1997, years with winter temperatures as low as -10 or -13°C have occurred in the Willamette Valley with frequencies of approximately 39 and 8%, respectively. We conclude that year-to-year variation in winter temperature could have a significant effect on the survival of the grass stem rust pathogen.


Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 955-963
Author(s):  
Brijesh B. Karakkat ◽  
Vonte L. Jackson ◽  
Paul L. Koch

Crown rust (caused by Puccinia coronata) and stem rust (caused by P. graminis) are two common and destructive diseases of turfgrass in the United States. Crown rust has been associated with perennial ryegrass and stem rust with Kentucky bluegrass when identified based solely on fungal morphology. However, recent studies using molecular identification methods have indicated the host–pathogen relationship of rusts on turf to be more complex. Our primary objective was to quickly and accurately identify P. coronata and P. graminis in symptomatic turfgrass leaves over 3 years on turfgrass samples from across the Midwestern United States. Between 2013 and 2015, 413 samples of symptomatic cool-season turfgrass from Wisconsin and surrounding states were screened using real-time polymerase chain reaction. Of these samples, 396 were Kentucky bluegrass and 17% of them contained P. coronata, 69% contained P. graminis, and 13% contained both P. coronata and P. graminis. In addition, both year and location effects were observed on the distribution of Puccinia spp. collected annually from two locations in southern Wisconsin. This research supports previous conclusions that have identified variability among P. graminis and P. coronata host relationships on turfgrass, and further demonstrates that rust fungal populations on Kentucky bluegrass may not be consistent between locations in the same year or over multiple years at the same location. The increasing evidence of variation in the turfgrass rust populations will likely affect future rust management and turfgrass breeding efforts.


Plant Disease ◽  
2021 ◽  
Author(s):  
Kumarse Nazari ◽  
Emad Al-Maaroof ◽  
Ezgi Kurtulus ◽  
Handan Kavaz ◽  
Dave Hodson ◽  
...  

A wheat rust survey was conducted in Iraq in 2019 and collected 27 stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Erikks. & E. Henn.) samples. Seven samples were viable, and they were tested for races of P. graminis f. sp. tritici at the Regional Cereal Rust Research Center (RCRRC) in Izmir, Turkey under strict quarantine procedures. Two 0.5 cm segments of each infected stem sheath were incubated in a petri dish at 20°C for three hours for re-hydration of urediniospores, which were multiplied on 10-day old seedlings of susceptible cultivar Morocco grown in a spore free growth chamber at 18°C and 16 hours light. Inoculated seedlings underwent a dew period at 18°C for 16 hours dark and 8 hours fluorescent light and 95% relative humidity. Three days after moving the pots to a growth chamber with eight hours dark at 18°C and 16 hours light (300 µmol m-2s-1), each pot was covered using a cellophane bag. Bulk urediniospores of each collection were collected 14 days post-inoculation from a cellophane bag using a mini cyclone spore collector connected to a gelatin capsule. One ml of 3M Novec™ oil was added to each capsule, and spores were inoculated onto 20 North American stem rust differential lines using the standard procedures (Jin et al. 2008). Pre-inoculation, inoculation, incubation, and post-inoculation conditions were the same as above. Seedling infection types (ITs) were recorded 14 days post-inoculation using 0 to 4 scale (Stakman et al. 1962). Race designation followed the five- letter code nomenclature described by Jin et al. (2008). Out of the seven samples, four were typed as TKKTF, two as TKTTF, and one collected from an advanced breeding bread wheat line “Shahoo 2” (Inqalab 91*2/Tukuru) in a trial site at Halabja governorate showed mixed ITs of 11+ and 3+ for lines carrying Sr11, Sr24, Sr36, and Sr31. Three single pustule (SP) isolates were developed from the IT of 3+ pustules collected from the Sr31 tester line, and one SP isolate was developed from the IT 11+ pustule collected from the Sr11 source. After spore multiplication, the SP-derived isolates were inoculated on the 20 North American differential lines. To confirm virulence/avirulence on Sr24, Sr31, and Sr36, cultivars Siouxland (PI 483469, Sr24+Sr31) and Sisson (PI 617053, Sr36+Sr31) were also inoculated. All seedling assays were repeated three times. The three SP isolates virulent on Sr31 were designated as race TTKTT, and the SP isolate virulent on Sr11 was designated as TKTTF. Seedling ITs of 3+ and 0; were recorded for Siouxland and Sisson against TTKTT, respectively, and both cultivars showed IT of 1+ against TKTTF. Race TKTTF was similar to TKKTF except for additional virulence on Sr36, and TTKTT differed from the other two races being virulent on Sr24 and Sr31. DNA analysis of three TTKTT isolates from Kenya and the TTKTT isolate from Iraq using a diagnostic qPCR assay developed by the USDA-ARS Cereals Disease Laboratory (Ug99 RG stage 1, Szabo unpublished) confirmed that all tested isolates belonged to the Ug99 lineage. Race TTKTT was first reported from Kenya in 2014 (Patpour et al. 2016), and in 2018 from Ethiopia (Hei et al. 2020). We report the first detection of TTKTT in Iraq and the Middle East region. This represents only the third instance of a member of the Ug99 race group outside of Africa since first detection of race TTKSK in Yemen in 2006, and Iran in 2007 (Nazari et al. 2009). The continued spread of stem rust races with complex virulence and the increasing frequency and early onset of stem rust infections in the Middle East is a cause for concern. Continuous support for rust surveillance and race typing in this region remains crucial. References: Hei, N. B., et al. 2020. Plant Dis. 104:982. Jin, Y., et al. 2008. Plant Dis. 92:923-926. Nazari, K., et al. 2009. Plant Dis. 93:317. Patpour, M., et al. 2016. Plant Dis. 100:522. Stakman, E. C., et al. 1962. Identification of physiological races of Puccinia graminis var. tritici. U. S. Dep. Agric. ARS E-617.


Genome ◽  
1990 ◽  
Vol 33 (2) ◽  
pp. 198-202 ◽  
Author(s):  
D. E. Harder ◽  
J. Chong ◽  
P. D. Brown ◽  
J. W. Martens

Accessions of wild Avena spp. obtained from the Iberian Peninsula were screened for resistance to oat crown and oat stem rust. Of a number of accessions which showed resistance, A. sterilis accession IB3056 was selected for further genetic analysis because it had combined resistance to both crown and stem rusts and as a hexaploid was readily hybridizable with A. sativa. IB3056 was crossed and backcrossed with the susceptible cultivar 'Makuru' and progeny were analyzed for segregation to a range of rust races. A single dominant gene conferred resistance to crown rust. The resistance was highly effective against all isolates of Puccinia coronata avenae tested. The crown rust resistance of IB3056 was due either to gene Pc68 or was very closely linked or allelic to Pc68. Seedling plants of the IB3056 parent were susceptible to all isolates of P. graminis avenae tested, but in the adult plant stage they were resistant. All IB3056/2* Makuru progeny also were susceptible to stem rust as seedlings, but BC1F2 adult plants segregated for resistance in ratios indicating a single dominant gene, designated Pg17.Key words: oat crown rust, oat stem rust, adult plant resistance, seedling resistance


Author(s):  
Monika Novotná ◽  
Pavlína Hloučalová ◽  
Jiří Skládanka ◽  
Radovan Pokorný

Monitoring of Puccinia graminis subsp. graminicola and Puccinia coronata f. sp. lolii was carried out in Plant breeding station called Větrov. The pathogens were estimated on turf grass (Lolium perenne L., Deschampsia caespitosa (L.) P. B.) from 2009 to 2014. Puccinia graminis subsp. graminicola was detected in the increased level in 2009 and 2012. The highest amount of mixed infections was determined in 2014 because of the warmest winter from all monitored years and low precipitations. Significant differences were found out in the resistance of similar plant materials grown in different fields. Significant effect of weather conditions and supposed effect of different infectious pressure on various fields were reflected in these facts. At evaluated grasses, the highest (P < 0.05) occurence of Puccinia graminis subsp. graminicola. Lolium perenne L. was observed and the infection of Puccinia graminis subsp. graminicola (P < 0.05) was determined higher than in Deschampsia caespitosa (L.) P. B.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Roshan Sharma Poudel ◽  
Jonathan Richards ◽  
Subidhya Shrestha ◽  
Shyam Solanki ◽  
Robert Brueggeman

Abstract Background Stem rust is an economically important disease of wheat and barley. However, studies to gain insight into the molecular basis of these host-pathogen interactions have primarily focused on wheat because of its importance in human sustenance. This is the first extensive study utilizing a transcriptome-wide association mapping approach to identify candidate Puccinia graminis f. sp. tritici (Pgt) effectors/suppressors that elicit or suppress barley stem rust resistance genes. Here we focus on identifying Pgt elicitors that interact with the rpg4-mediated resistance locus (RMRL), the only effective source of Pgt race TTKSK resistance in barley. Results Thirty-seven Pgt isolates showing differential responses on RMRL were genotyped using Restriction Site Associated DNA-Genotyping by Sequencing (RAD-GBS), identifying 24 diverse isolates that were used for transcript analysis during the infection process. In planta RNAseq was conducted with the 24 diverse isolates on the susceptible barley variety Harrington, 5 days post inoculation. The transcripts were mapped to the Pgt race SCCL reference genome identifying 114 K variants in predicted genes that would result in nonsynonymous amino acid substitutions. Transcriptome wide association analysis identified 33 variants across 28 genes that were associated with dominant RMRL virulence, thus, representing candidate suppressors of resistance. Comparative transcriptomics between the 9 RMRL virulent -vs- the 15 RMRL avirulent Pgt isolates identified 44 differentially expressed genes encoding candidate secreted effector proteins (CSEPs), among which 38 were expressed at lower levels in virulent isolates suggesting that they may represent RMRL avirulence genes. Barley transcript analysis after colonization with 9 RMRL virulent and 15 RMRL avirulent isolates inoculated on the susceptible line Harrington showed significantly lower expression of host biotic stress responses specific to RMRL virulent isolates suggesting virulent isolates harbor effectors that suppress resistance responses. Conclusions This transcriptomic study provided novel findings that help fill knowledge gaps in the understanding of stem rust virulence/avirulence and host resistance in barley. The pathogen transcriptome analysis suggested RMRL virulence might depend on the lack of avirulence genes, but evidence from pathogen association mapping analysis and host transcriptional analysis also suggested the alternate hypothesis that RMRL virulence may be due to the presence of suppressors of defense responses.


1980 ◽  
Vol 22 (4) ◽  
pp. 641-649 ◽  
Author(s):  
J. W. Martens ◽  
R. I. H. McKenzie ◽  
D. E. Harder

Tests of over 1400 Avena accessions, comprising eight species, from Iran, Iraq and Turkey have shown that resistance to oat stem rust caused by Puccinia graminis Pers. f. sp. avenae Eriks and E. Henn. occurs infrequently in the Avena populations of the region and was found only in A. barbata Pott ex Link and A. sterilis L. Resistance to oat crown rust caused by P. coronata Cda f. sp. avenae Eriks, was common in A. barbata from Turkey and in A. sterilis from all three countries. The inheritance of resistance conferred by two genes from the region, Pg-15 and Pc-54 is described. Gene Pg-15, the first stem rust resistance gene found in this region, is partially dominant and independent of the Pg-2, Pg-9, Pg-12 and Pg-13 loci. It conferred resistance to races that are important in North America. Gene Pc-54 was also the first crown rust resistance gene to be identified from this region. It was usually recessive, and allelic or closely linked with gene Pc-35.


Plant Disease ◽  
2001 ◽  
Vol 85 (9) ◽  
pp. 993-998 ◽  
Author(s):  
W. F. Pfender

In the Pacific Northwest region of the United States, cool-season grasses grown for seed can be severely damaged by Puccinia graminis subsp. graminicola, causal agent of stem rust. Urediniospores of the pathogen, collected either from perennial ryegrass (Lolium perenne) or tall fescue (Festuca arundinacea), were tested for host range among selected grasses and cereals. Under greenhouse conditions, the inoculum from L. perenne could produce pustules on this host, as well as on Dactylis glomerata, Lolium multiflorum, Poa pratensis, and F. rubra subsp. rubra and subsp. commutata; it caused only limited pustule development (low incidence or pustule type) on F. arundinacea, F. ovina subsp. hirtula, P. annua, Hordeum vulgare, and Secale cereale. No symptoms were produced on Triticum aestivum or Avena sativa. The inoculum from F. arundinacea had a host range that included itself, D. glomerata, L. perenne, L. multiflorum, and F. rubra subsp. rubra and subsp. commutata; there was no sign of pustule development on Poa spp. or the cereal grains tested (T. aestivum, A. sativa, S. cereale, and H. vulgare). The two urediniospore populations differed also in rate of symptom development on most of their common hosts. There was a small, but statistically significant, difference in spore size among the populations from different hosts. No recommendation is made for separate taxonomic status of populations from F. arundinacea and L. perenne, but the adaptation of each to its own host should be considered when devising disease management strategies and studying host genetic resistance.


Sign in / Sign up

Export Citation Format

Share Document