scholarly journals First Report of Summer Patch of Creeping Bentgrass Caused by Magnaporthiopsis poae in Southeastern China

Plant Disease ◽  
2021 ◽  
Author(s):  
Yuxin Zhou ◽  
Min Yin ◽  
Fei Liu

Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season perennial turfgrass that has been widely used on golf courses across China. In July 2017, an unknown disease outbreak caused damages on seven of the 18 putting greens of creeping bentgrass at Jiuqiao golf club in Hangzhou city of Zhejiang province, day-time high temperatures were consistently above 35°C during the disease development. Symptoms appeared in tan irregular patches of 5 to 20-cm diameter, exhibiting chlorosis and foliar dieback in most part. Necrotic roots were frequently observed in diseased areas and colonized with ectotrophic hyphae under a microscope. Similar symptoms and signs were reported on creeping bentgrass caused by Magnaporthiopsis poae (Landschoot & Jackson) J. Luo & N. Zhang on golf courses in Beijing (Hu et al. 2017). Fifteen disease samples were collected from seven putting greens. Dark root tips were cut, surface sterilized in 0.6% sodium hypochlorite (NaClO) for 5 min, washed twice with sterilized water, air dried for 1 min and placed on potato dextrose agar (PDA) containing each of 50 mg L-1 ampicillin, streptomycin sulfate, and tetracycline. Plates were incubated in the dark at room temperature for 4 days, and 10 fungal isolates with similar morphology as described by Clarke and Gould (1993) were consistently recovered from the diseased root tips. DNA of two representative isolates was extracted and amplified with primers ITS 5/ITS 4 (White et al. 1990). PCR products were sequenced (deposited in GenBank as MZ895215 and MZ895216), and BLAST analysis showed 99.17% similarity to M. poae (accession number: DQ528765). Six plastic pots (15 cm height × 15 cm top diameter × 10 cm bottom diameter, three replicates for each isolate) were seeded with creeping bentgrass and placed in the greenhouse for two months of plant growth before inoculation. The pathogenic inoculum was prepared by inoculating autoclaved oat seeds with M. poae isolates, followed by two weeks of incubation at 25°C. About 25 mg M. poae-infested oat seeds were placed 10 cm below the soil surface in the root zone of creeping bentgrass. Non-infested oat seeds were inoculated on healthy creeping bentgrass as controls. Pots were placed in a growth chamber with a 12-h day/night cycle at 35/28°C and watered daily to keep high soil moisture. Disease symptoms (foliar dieback and necrotic roots) were noted 3 weeks after inoculation. M. poae was consistently recovered from the roots of inoculated turf and identified molecularly as described above, fulfilling Koch’s postulates. To our knowledge, this is the first report of summer patch on creeping bentgrass caused by M. poae in southeastern China. This research demonstrates a wider distribution of M. poae and will be an important step towards the development of management strategies for summer patch control in China.

Plant Disease ◽  
2021 ◽  
Author(s):  
Jiamei Geng ◽  
Shan Jiang ◽  
Jian Hu

Hybrid bermudagrass (Cynodon dactylon×C. transvaalensis) is widely used as turf in transition zone of China. Spring dead spot (SDS) is one of the most damaging diseases of hybrid bermudagrass. Symptoms of SDS appear when hybrid bermudagrass starts to break dormancy with warm temperature in early spring. The symptoms show sunken, circular or irregularly shaped, straw-colored patches, with 20 to 100 cm in diameter. The patches maintain dormant as the surrounding uninfected turfgrass resumes growth and turns green. SDS pathogens are soilborne fungi that colonize roots, stolons and rhizomes, infected roots or rhizomes become black and eventually collapse. Three species of fungi are reported to cause SDS: Ophiosphaerella herpotricha (Fr) J. Walker; O. korrae (J. Walker & A.M. Smith) Shoemaker & C.E. Babcock; or O. narmari (J. Walker & A.M. Smith) Wetzel, Hubert & Tisserat (Walker and Smith 1972; Walker 1980; Shoemaker and Babcock 1989; Wetzel et al. 1999). However, distribution of the three species may vary by geographical region (Cottrill et al. 2016). In October 2020, symptoms of SDS were observed on hybrid bermudagrass fairways of Taihu golf course in Wuxi, Jiangsu province. Root samples of SDS were collected, symptomatic roots with 3-4 cm length were cut, washed 2-3 times, surface sterilized in 0.6% NaOCl for 5 min, rinsed and blotted dry for 2 min and placed on potato dextrose agar (PDA) amended with 50 mg L-1 each of ampicillin, streptomycin sulfate and tetracycline. Plates were incubated in the dark at 25℃ for 5-7 days, Hyphae growing from the roots were transferred to new PDA plates. A total of 7 fungal isolates with morphology similar to SDS pathogens were obtained (Tredway et al. 2009). The genomic DNA was extracted from 2 of them (7-41, 8-6) and amplified with universal primers ITS5 and ITS4 (White et al. 1990). PCR products were sequenced (deposited as MW536995 and MW536994 in GenBank, not available yet) and showed 99.79% similarity to O. narmari (KP690979). Pathogenicity tests were performed on ‘Tifdwarf’ hybrid bermudagrass (9-week-old in 5 × 20 cm Cone-Tainers containing a sand and nutrition substrate mixture). Eight oat seeds infested with O. narmari were inserted 5 cm below the soil surface in the root zone of hybrid bermudagrass. The inoculated turfgrass grew for five weeks in the growth chamber with a 12-h day/night cycle of 25/20°C and 90% relative humidity. A control treatment was inoculated with 8 noninfested sterile oat seeds, and each treatment was replicated 3 times. The root tissues of hybrid burmudagrass inoculated with O. narmari became black and necrotic, no symptoms were observed on the roots of noninfested plants. O. narmari was consistently reisolated from symptomatic roots, and confirmed by PCR as mentioned above. To the best of our knowledge, this is the first report of O. narmari caused spring dead spot in the transition zone of China. The identification of SDS caused by O. narmari will have important implications for the management of this root-rot species on hybrid bermudagrass.


2005 ◽  
Vol 15 (1) ◽  
pp. 169-172 ◽  
Author(s):  
M.A. Fidanza ◽  
P.F. Colbaugh ◽  
M.C. Engelke ◽  
S.D. Davis ◽  
K.E. Kenworthy

Fairy ring is a common and troublesome disease of turfgrasses maintained on golf course putting greens. Type-I fairy ring is especially destructive due to the development of hydrophobic conditions in the thatch and root zone, thus contributing to turfgrass injury and loss. The objective of this 2-year field study was to evaluate the application and novel delivery method of two fungicides and a soil surfactant for curative control of type-I fairy ring in a 20-year-old creeping bentgrass [Agrostis palustris (synonym A. stolonifera)] putting green. In both years, all treatments were applied twice on a 28-day interval. In 1998, flutolanil and azoxystrobin fungicides were applied alone and in combination with Primer soil surfactant by a conventional topical spray method, and fungicides without Primer applied via high-pressure injection (HPI). Acceptable type-I fairy ring control was observed in plots treated with flutolanil plus Primer, HPI flutolanil, azoxystrobin alone, azoxystrobin plus Primer, or HPI azoxystrobin. In 1999, treatments were HPI flutolanil, HPI flutolanil plus Primer, HPI azoxystrobin, HPI water only, and aeration only. Acceptable type-I fairy ring control was observed in plots treated with HPI flutolanil plus Primer or HPI azoxystrobin. HPI of fungicides alone or in combination with a soil surfactant may be a viable option for alleviating type-I fairy ring symptoms on golf course putting greens.


Plant Disease ◽  
2010 ◽  
Vol 94 (11) ◽  
pp. 1374-1374 ◽  
Author(s):  
G. L. Miller ◽  
D. E. Desjardin ◽  
L. P. Tredway

Seashore paspalum (Paspalum vaginatum Sw.) is a newly cultivated C4 turfgrass that has exceptional salinity tolerance and is highly suited for use on golf courses in coastal areas. In October 2008 and June 2009, circular patches of blighted seashore paspalum ranging from 30 cm to >3 m in diameter were observed in fairways, tees, and roughs established with ‘Supreme’ seashore paspalum at Roco Ki Golf Club in Macao, Dominican Republic. Affected patches were initially chlorotic followed by reddish brown necrosis of leaves and leaf sheaths. Reddish brown-to-gray lesions were also observed on leaf sheaths during the early stages of necrosis. During periods of wet or humid weather from June through October, basidiocarps were produced on necrotic plant tissue and identified as Marasmiellus mesosporus Singer (2). Three isolates were obtained by plating symptomatic leaf sheaths that were surface sterilized with a 0.5% NaOCl solution on potato dextrose agar amended with 50 ppm each of streptomycin, chloramphenicol, and tetracycline (PDA+++). Sequences of the internal transcribed spacer (ITS) region of rDNA, obtained from these three isolates and three stipes of basidiocarps, were identical to each other and 99% similar to a M. mesosporus sequence deposited in the NCBI database (Accession No. AB517375). To confirm pathogenicity, a M. mesosporus isolate obtained from symptomatic plant tissue was inoculated onto 6-week-old P. vaginatum (‘Seaspray’) planted (0.5 mg seed/cm2) in 10-cm-diameter pots containing a mixture of 80% sand and 20% reed sedge peat. Two weeks prior to inoculation, the isolate was grown on a sterilized mixture of 100 cm3 of rye grain, 4.9 ml of CaCO3, and 100 ml of water. Infested grains were placed 0.5 cm below the soil surface for inoculation. Pots were inoculated with five infested grains or five sterilized, uninfested grains with three replications of each treatment. After inoculation, pots were placed in a growth chamber with a 12-h photoperiod set to 30°C during the day and 26°C at night. Approximately 20% of plants in inoculated pots were necrotic 7 days postinoculation and this increased to 75% by 21 days postinoculation. Diseased plants in inoculated pots exhibited symptoms similar to those observed in the field. Leaves were initially chlorotic with brown lesions on lower leaf sheaths and eventually turned necrotic, reddish brown, and collapsed. Pots receiving uninfested grains were healthy and showed no symptoms on all rating dates. At 21 days postinoculation, basidiocarps were observed emerging from three colonized plants at the base of the oldest leaf sheath near the crown. Three reisolations were made on PDA+++ from stem lesions surface sterilized with a 0.5% NaOCl solution. All reisolations were confirmed as M. mesosporus by culture morphology and ITS sequence data. M. mesosporus was previously reported causing disease on American beachgrass (Ammophila breviligulata Fernald) in North Carolina (1) and recently in Japan (3). The pathogen was initially placed in the genus Marasmius and reported as the cause of the disease Marasmius blight (1). Subsequent morphological observation found that the pathogen belonged in the genus Marasmiellus (2). To our knowledge, this is the first report of M. mesosporus causing Marasmiellus blight on seashore paspalum, a high-amenity turfgrass. References: (1) L. Lucas et al. Plant Dis. Rep. 55:582, 1971. (2) R. Singer et al. Mycologia 65:468, 1973. (3) S. Takehashi et al. Mycoscience 48:407, 2007.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 591-591 ◽  
Author(s):  
K. L. Schroeder ◽  
T. C. Paulitz

Rhizoctonia root rot occurs commonly on canola (Brassica napus L.) in Washington State. Recently, isolates of an additional pathogen were found to be involved in this disease complex. Isolates of an AG-I-like Ceratobasidium sp. were collected from roots and root zone soil in central Washington near Ritzville. Identity of selected isolates was verified by sequencing the internal transcribed spacer (ITS) region of the rDNA (GenBank Accession Nos. JQ247570, JQ247571, and JQ247572), with a 90 to 93% identity to AG-I. All isolates also amplified with AG-I-like specific primers (1). Six isolates were included in pathogenicity assays conducted in the greenhouse. There were five replicates of three plants for each treatment and the experiment was conducted twice. Pasteurized soil was infested with ground oat inoculum (1%) and placed into containers (3.8 × 21 cm). Infested soils were seeded with canola, chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), pea (Pisum sativum L.), barley (Hordeum vulgare L.), or wheat (Triticum aestivum L.). After 3 weeks of incubation at 15°C, the plants were destructively harvested. The emergence of canola was consistently reduced in soil infested with a Ceratobasidium sp., with reductions of 0 to 23% (average 11%). There was no postemergence damping-off, a symptom commonly associated with AG-2-1 (2). Plant height and top dry weights were significantly reduced for canola seeded into infested soil. Heights of plants growing in infested soil was reduced by 25 to 53% (average 42%) and top dry weight was reduced by 37 to 81% (average 61%) compared with the noninfested control. The legume hosts tested in this study were also affected by this Ceratobasidium sp., but to a lesser extent. Compared with the noninfested controls, there was evidence of preemergence damping-off in chickpea (0 to 27%, average 13%) and pea plants were consistently stunted (5 to 23%, average 12%). Chickpea and pea plants grown in infested soil also had reduced top dry weights of 9 to 28% (average 17%) and 13 to 35% (average 21%), respectively. The roots of all infected hosts had a characteristic brown discoloration with tapered, rotted root tips (spear tips). There was no reduction in emergence or plant height of wheat and barley; there was inconsistent reduction in dry weight of these plants. To our knowledge, this is the first report of a Ceratobasidium sp. causing disease on canola in Washington State. References: (1) P. A. Okubara et al. Phytopathology 98:837, 2008. (2) T. C. Paulitz et al. Plant Dis. 90:829, 2006.


2001 ◽  
Vol 11 (3) ◽  
pp. 437-440 ◽  
Author(s):  
Keith J. Karnok ◽  
Kevin A. Tucker

Localized dry spot (LDS) caused by water repellent soil is a common problem on golf course putting greens having a predominately sand root zone. Fairy ring often causes LDS by developing hydrophobic soil. Although the fungicide flutolanil is labeled for the control of fairy ring, golf course superintendents often apply flutolanil to all LDS caused by hydrophobic soil and other conditions. The objective of this study was to determine the effect of flutolanil on an existing hydrophobic soil. The study was conducted on a creeping bentgrass [Agrostis palustris (synonym A. stolonifera)] experimental golf green in which the top 4 inches (10.2 cm) of the root zone was a moderately hydrophobic sand. Six treatments were used: uncored, cored, flutolanil (two applications.), flutolanil + Primer wetting agent (two applications.), Primer (two applications.) and Primer (three applications.). Plots receiving the fungicide and wetting agent treatments were cored before application. Each treatment containing the wetting agent significantly reduced soil water repellency. Flutolanil without wetting agent had no effect on soil hydrophobicity.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1165-1165 ◽  
Author(s):  
J. P. Kerns ◽  
P. L. Koch ◽  
B. P. Horgan ◽  
C. M. Chen ◽  
F. P. Wong

In summer of 2008, two turfgrass samples were submitted to the Turfgrass Diagnostic Lab at the University of Wisconsin–Madison. The samples were from golf courses in Beaver Dam, WI on 12 June and Minneapolis, MN on 14 July. Both samples were collected from 40-year-old native soil putting greens mowed at 3.2 mm that had received annual sand topdressing since 1992. The putting greens were a mixture of approximately 75% annual bluegrass (Poa annua L.) and 25% creeping bentgrass (Agrostis stolonifera L.) Stand symptoms observed in the field were bright yellow, sunken rings that were approximately 5 cm thick and 15 to 35 cm in diameter. Some rings were incomplete, giving a scalloped appearance. Affected plants were severely chlorotic and lacked any discrete lesions or spots. Symptoms were more prominent on annual bluegrass than creeping bentgrass. Upon incubation of samples at room temperature in a moist chamber for 24 h, fungal mycelia with septations and right-angle branching were observed in the foliage and thatch layer. Two isolates were obtained from affected annual bluegrass in each sample. Isolations were performed by washing affected leaves in 0.5% NaOCl solution for 2 min, blotting the tissue dry, and plating the tissue on potato dextrose agar (PDA) amended with chloramphenicol (0.05 g/liter), streptomycin (0.05 g/liter), and tetracycline (0.05 g/liter). After incubation for 2 days at 23°C, isolates were transferred and maintained on PDA. All four isolates had multinucleate hyphae and displayed sclerotial characteristics similar to those reported for Waitea circinata var. circinata (2). Sequencing the ITS1F/ITS4-amplified rDNA internal transcribed spacer (ITS) region confirmed the isolates as W. circinata var. circinata, with ≥99% sequence similarity to published W. circinata var. circinata ITS sequences (GenBank Accession No. FJ755849) (1,2,4). To confirm pathogenicity, isolates were inoculated onto 6-week-old annual bluegrass (True Putt/DW184) grown in 10-cm-diameter pots containing calcined clay (Turface; Profile Products LLC., Buffalo Grove, IL). Two 4-mm-diameter agar plugs for each isolate were removed from the margins of 3-day-old colonies grown on PDA and placed near the soil surface to ensure contact with the lower leaf blades. Each isolate was placed in four separate pots to have four replicated tests per isolate, and four noninfested pots were utilized as negative controls. All pots were placed in moist chambers at 28°C with a 12-h light/dark cycle. Within 4 to 6 days, inoculated plants exhibited severe chlorosis and a minor amount of aerial mycelium was observed. Inoculated plants became necrotic after 15 to 20 days, while the noninoculated plants remained healthy. W. circinata var. circinata was reisolated from inoculated plants and its identity was confirmed by morphological and molecular characteristics. This pathogen was previously reported as a causal agent of brown ring patch of creeping bentgrass in Japan and annual bluegrass in the western United States (2,4). To our knowledge, this is the first report of brown ring patch in Minnesota and Wisconsin. Intensive fungicide practices are needed to control brown ring patch; therefore, this disease could have significant economic impact throughout the Upper Midwest (3). References: (1) C. M. Chen et al. Plant Dis. 93:906, 2009 (2) K. de la Cerda et al. Plant Dis. 91:791, 2007. (3) J. Kaminski and F. Wong. Golf Course Manage. 75(9):98, 2007. (4) T. Toda et al. Plant Dis. 89:536, 2005.


Plant Disease ◽  
2002 ◽  
Vol 86 (4) ◽  
pp. 442-442 ◽  
Author(s):  
T. C. Paulitz

In May 2001, severe stunting, lateral rot, and brown discoloration of taproots were observed in a field of direct-seed (no-till) pea cv. Columbia southeast of Lewiston, ID. The field had been previously cropped with direct-seeded spring barley. Roots were washed, plated on water agar containing benomyl at 1 μ/ml and chloramphenicol at 100 μg/ml, and incubated at 22°C. Fungal colonies were identified as Rhizoctonia oryzae (teleomorph Waitea circinata Warcup & Talbot) based on hyphal and colony morphology (3) and anastamosis reaction with known tester isolates. Two isolates were grown on autoclaved oat seeds for 3 weeks to produce inoculum for pathogenicity testing. One colonized oat seed was placed below a seed of Pisum sativum ‘Little Marvel’ planted in pasteurized sandy loam soil. There were five pea seeds per 10-cm-diameter pot and three replicate pots per isolate. Both isolates caused severe damping-off and stunting. Both isolates were also tested in nonpasteurized (natural) sandy loam in 4 cm × 20 cm plastic pine seedling tubes. Eight colonized oat seeds were placed in a band 1 cm below a single pea seed planted in each tube. Tubes were watered with metalaxyl (0.1g/liter, technical grade) to inhibit Pythium. Control treatments consisted of soil amended with either autoclaved oat seeds or nothing. Two isolates of R. oryzae were tested with two pea cultivars (B160 and Marjorette), with five replicates per treatment. R. oryzae did not significantly reduce emergence but did cause necrosis and browning of root tips and reduction in lateral root formation. R. oryzae was reisolated from infected roots. To our knowledge, this is the first report of R. oryzae causing disease on a dicot in North America. In Australia, a Waitea sp. was weakly virulent to subterranean clover producing constrictions of the taproot but did not affect plant survival and growth (4). W. circinata also caused damping-off of tobacco seedlings in India (2). In the Pacific Northwest, peas are often grown in rotation with wheat and barley, and R. oryzae can be virulent on these cereal crops (1). This finding may have important implications for disease management in wheat and legumes in crop rotation systems. References: (1). M. Mazzola et al. Phytopathology 86:354, 1996. (2) C. A. Raju. Tob. Res. 19:92, 1993. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1991. (4) D. H. Wong et al. Trans. Br. Mycol. Soc. 85:156, 1985.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 426-426 ◽  
Author(s):  
S. Kammerer ◽  
P. F. Harmon ◽  
S. McDonald ◽  
B. Horvath

Brown ring patch was first described as a disease of cool-season turfgrass on creeping bentgrass (Agrostis palustris) (4) in Japan and later reported in California on annual bluegrass (Poa annua) (2). Brown ring patch symptoms were observed beginning in December 2007 through spring 2008 on 6 of 18 putting greens on a golf course in Reston, VA. Symptoms included yellow rings and patches of blighted turfgrass on the mixed stands of creeping bentgrass (A. palustris) and primarily annual bluegrass (Poa annua). Chlorosis and blight occurred predominantly on P. annua. A turfgrass sample was received from a consultant in April 2008, and disease severity on affected greens was estimated to be 40%. After incubating for 2 days in a moist chamber, Rhizoctonia-like aerial mycelia were observed. The pathogen was isolated on water agar and potato dextrose agar amended with thiophanate-methyl (100 mg/L), rifampicin (100 mg/L), and ampicillin (500 mg/L) from P. annua plants that had been surface sterilized with 70% ethanol for 15 s. Colony and sclerotia morphology were consistent with Waitea circinata var. circinata as previously described (2,4). Hyphae were stained with aniline blue and multiple nuclei were observed per cell. The teleomorph was not observed on plant material or in culture. Amplified fragments of rDNA including internal transcribed spacers from the isolate were amplified in three bacterial clones and sequenced bidirectionally (GenBank Accession Nos. FJ154894, FJ154895, and FJ154896) using primers ITS1/ITS4 (2,4). The consensus sequences matched, with 99% homology and 99% sequence overlap, isolate TRGC1.1 of W. circinata var. circinata (GenBank Accession No. DQ900586) (2). Annual bluegrass was not available for use in performing Koch's postulates, but previous studies have shown that W. circinata var. circinata is pathogenic to roughstalk bluegrass (P. trivialis) (1,3). Pots of P. trivialis cv. Cypress that were 1 week postemergence were inoculated with seven wheat grains that had been autoclaved and then infested with the isolate. Plants were incubated at 25°C in a sealed plastic bag with a moist paper towel on the bottom. Hyphae grew from the grains and colonized the grass. Individual plants began to turn chlorotic within 3 days, and more than 80% of the turf in pots was dead after 1 week. Control pots were inoculated with autoclaved wheat seed and showed no disease symptoms after 1 week. Inoculations were repeated twice more with the same results. W. circinata var. circinata was reisolated from affected plants in all replications of the test. To our knowledge, this is the first report of brown ring patch in Virginia. Additional research is needed to assess the prevalence and importance of this disease on golf course putting greens in Virginia. References: (1) C. M. Chen et al. Plant Dis. 91:1687, 2007. (2) K. A. de la Cerda et al. Plant Dis. 91:791, 2007. (3) N. Flor et al. Plant Dis. 92:1586, 2008. (4) T. Toda et al. Plant Dis. 89:536, 2005.


HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 232-236 ◽  
Author(s):  
John E. Jordan ◽  
Richard H. White ◽  
James C. Thomas ◽  
Trent C. Hale ◽  
Donald M. Vietor

Proper water management is a major responsibility of managers of creeping bentgrass grown on putting greens in the hot and humid southern states. The combination of shallow root systems, sand-based root zones, high temperatures, and high evaporative demands frequently results in severe drought stress on bentgrass (Agrostis palustris Huds.) greens. This study was initiated to determine the effects of irrigation frequency on creeping bentgrass turgor pressure and on the O2 and CO2 concentrations in a sand-based root zone mixture. In total, 81 plots, 1.5 × 1.5 m each, were established on a USGA-type root zone mixture and organized into 9 groups of 9 plots each. Each group could be irrigated individually. One plot in each group was planted to either `A-4', `Crenshaw', `Mariner', `L-93', or `Penncross' creeping bentgrass. Irrigation frequency treatments of 1-, 2-, and 4-day replacement of historical PET were imposed on three groups each. After establishment, measurements of the leaf water potential, osmotic potential, soil oxygen concentration, and soil carbon dioxide concentrations were made over a 1- to 2-year period. Bentgrass irrigated every 1 or 2 days had significantly (P = 0.05) greater turgor pressures at 0600 hr as compared to turf irrigated every 4 days in 1997. No differences were seen in 1998 due to drier environmental conditions. Concentrations of O2 and CO2 in the soil air remained in the optimal range for all treatments, indicating that lack of O2 in the root zone as a result of frequent irrigation may not be the primary cause for reduced rooting depth of bentgrass grown on highly permeable sand-based root zone mixtures.


Sign in / Sign up

Export Citation Format

Share Document