scholarly journals Zucchini yellow mosaic virus Populations from East Timorese and Northern Australian Cucurbit Crops: Molecular Properties, Genetic Connectivity, and Biosecurity Implications

Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1236-1245 ◽  
Author(s):  
Solomon Maina ◽  
Brenda A. Coutts ◽  
Owain R. Edwards ◽  
Luis de Almeida ◽  
Monica A. Kehoe ◽  
...  

Zucchini yellow mosaic virus (ZYMV) isolates from cucurbit crops growing in northern Australia and East Timor were investigated to establish possible genetic connectivity between crop viruses in Australia and Southeast Asia. Leaves from symptomatic plants of pumpkin (Cucurbita moschata and C. maxima), melon (Cucumis melo), and zucchini (C. pepo) were sampled near Broome, Darwin, and Kununurra in northern Australia. Leaves from symptomatic plants of cucumber (C. sativus) and pumpkin sampled in East Timor were sent to Australia on FTA cards. These samples were subjected to high-throughput sequencing and 15 complete new ZYMV genomic sequences obtained. When their nucleotide sequences were compared with those of 48 others from GenBank, the East Timorese and Kununurra sequences (three per location) and single earlier sequences from Singapore and Reunion Island were all in major phylogroup B. The seven Broome and two Darwin sequences were in minor phylogroups I and II, respectively, within larger major phylogroup A. When coat protein (CP) nucleotide sequences from the 15 new genomes and 47 Australian isolates sequenced previously were compared with 331 other CP sequences, the closest genetic match for a sequence from Kununurra was with an East Timorese sequence (95.5% nucleotide identity). Analysis of the 63 complete genomes found firm recombination events in 12 (75%) and 2 (4%) sequences from northern Australia or Southeast Asia versus the rest of the world, respectively; therefore, the formers’ high recombination frequency might reflect adaptation to tropical conditions. Both parents of the recombinant Kununurra sequence were East Timorese. Phylogenetic analysis, nucleotide sequence identities, and recombination analysis provided clear evidence of genetic connectivity between sequences from Kununurra and East Timor. Inoculation of a Broome isolate to zucchini and watermelon plants reproduced field symptoms observed in northern Australia. This research has important biosecurity implications over entry of damaging viral crop pathogens not only into northern Australia but also moving between Australia’s different agricultural regions.

Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1326-1336 ◽  
Author(s):  
Solomon Maina ◽  
Martin J. Barbetti ◽  
Owain R. Edwards ◽  
David Minemba ◽  
Michael W. Areke ◽  
...  

Zucchini yellow mosaic virus (ZYMV) isolates were obtained in Papua New Guinea (PNG) from cucumber (Cucumis sativus) or pumpkin (Cucurbita spp.) plants showing mosaic symptoms growing at Kongop in the Mount Hagen District, Western Highlands Province, or Zage in the Goroka District, Eastern Highlands Province. The samples were blotted onto FTA cards, which were sent to Australia, where they were subjected to high-throughput sequencing. When the coding regions of the nine new ZYMV genomic sequences found were compared with those of 64 other ZYMV sequences from elsewhere, they grouped together, forming new minor phylogroup VII within ZYMV’s major phylogroup A. Genetic connectivity was lacking between ZYMV genomic sequences from PNG and its neighboring countries, Australia and East Timor; the closest match between a PNG and any other genomic sequence was a 92.8% nucleotide identity with a sequence in major phylogroup A’s minor phylogroup VI from Japan. When the RDP5.2 recombination analysis program was used to compare 66 ZYMV sequences, evidence was obtained of 30 firm recombination events involving 41 sequences, and all isolates from PNG were recombinants. There were 21 sequences without recombination events in major phylogroup A, whereas there were only 4 such sequences within major phylogroup B. ZYMV’s P1, Cl, N1a-Pro, P3, CP, and NIb regions contained the highest evidence of recombination breakpoints. Following removal of recombinant sequences, seven minor phylogroups were absent (I, III, IV, V, VI, VII, and VIII), leaving only minor phylogroups II and IX. By contrast, when a phylogenetic tree was constructed using recombinant sequences with their recombinationally derived tracts removed before analysis, five previous minor phylogroups remained unchanged within major phylogroup A (II, III, IV, V, and VII) while four formed two new merged phylogroups (I/VI and VIII/IX). Absence of genetic connectivity between PNG, Australian, and East Timorese ZYMV sequences, and the 92.8% nucleotide identity between a PNG sequence and the closest sequence from elsewhere, suggest that a single introduction may have occurred followed by subsequent evolution to adapt to the PNG environment. The need for enhanced biosecurity measures to protect against potentially damaging virus movements crossing the seas separating neighboring countries in this region of the world is discussed.


2016 ◽  
pp. 10-18
Author(s):  
E.I. Ayo-John ◽  
O.O. Odedara ◽  
E.V. Loko ◽  
F.D. Aworinde ◽  
A.C. Tella ◽  
...  

Farmers’ fields where cucurbit crops were grown in seven Local Government Areas (LGA) of Ogun state were surveyed in 2009 and 2010 for incidence and severity of virus symptoms and the identity of the viruses infecting the crops were determined using DAS-ELISA. Six viruses including Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Papaya ringspot virus (PRSV), Cucumber green mottle mosaic virus (CGMMV), Cucumber mosaic virus (CMV), and Melon necrotic spot virus (MNSV) were indexed for in the leaf samples. A total of 14 farms were visited and 130 leaf samples were collected. The incidences of virus symptoms on the field were between 41.0 and 100.0% while the mean severity score were between 1 (apparently healthy) and 5 (severe symptoms and death) in some locations. The incidences of virus symptoms such as mottle, chlorosis and yellowing, mosaic, leaf distortion, puckering, vein banding and vein clearing were 20.0, 19.2, 18.5, 16.2, 11.5, 3.1 and 3.1%, respectively in the collected leaf samples. However, 8.5% of the leaf samples were apparently healthy. Serological analysis of the leaf sample showed the presence of ZYMV, PRSV, WMV, CMV, MNSV, and CGMMV. The most widely distributed virus was MNSV which occurred in 9 out of 14(64.3%)of the locations. This was followed by WMV and CGMMV occurring in 8 out of 14 (57.0%) of the locations. PRSV and CMV occurred in 50.0% of the locations. ZYMV occurred in 5 out of 14 (35.7%) of the locations. The viruses detected are among the viruses reported to limit the production of cucurbit crops world-wide.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 829G-829 ◽  
Author(s):  
Mario Orozco-Santos ◽  
Felipe Delgadillo-Sanchez ◽  
Miguel Arenas-Varga ◽  
Javier Farias-Larios

Zucchini yellow mosaic virus (ZYMV) infection causes heavy losses in cucurbit crops grown in the Mediterranean, Central Europe, the United States, and Mexico. Recently, ZYMV was found affecting muskmelon (Cucumis melo L.) in Colima, Mexico. An experiment was carried out under dry tropical conditions with the objectives: 1) to determine the effect of ZYMV on flowering and yield of muskmelon cv. Primo, and 2) to evaluate its transmission by some aphid species. Perfect and staminate flowers were significantly reduced when ZYMV was inoculated during vegetative growth, flowering, and fruit set. ZYMV affected yield when it was inoculated from vegetative growth to flowering and fruit set. In plants inoculated during vegetative growth the yield was null, while those inoculated at early flowering and fruit set the yield was reduced by 80% and 49%, respectively. The yield was not affected when ZYMV was inoculated on fruit growth. The aphid Myzus persicae, Aphis gossypii, A. spiraecola, and Uroleucon ambrosia-transmited ZYMV from Cucurbita pepo to Cucumis melo; but Aphis nert, did not.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Vivek Khanal ◽  
Harrington Wells ◽  
Akhtar Ali

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016–2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.


2003 ◽  
Vol 93 (12) ◽  
pp. 1478-1484 ◽  
Author(s):  
C. Desbiez ◽  
A. Gal-On ◽  
M. Girard ◽  
C. Wipf-Scheibel ◽  
H. Lecoq

Zucchini yellow mosaic virus (ZYMV, Potyvirus) is a very damaging cucurbit virus worldwide. Interspecific crosses with resistant Cucurbita moschata have led to the release of “resistant” zucchini squash (C. pepo) F1 hybrids. However, although the resistance is almost complete in C. moschata, the commercial C. pepo hybrids are only tolerant. ZYMV evolution toward increased aggressiveness on tolerant hybrids was observed in the field and was obtained experimentally. Sequence comparisons and recombination experiments revealed that a point mutation in the P3 protein of ZYMV was enough to induce tolerance breaking. Competition experiments were performed between quasi-isogenic wild-type, and aggressive variants of ZYMV distinguished by monoclonal antibodies. The aggressive mutants were more fit than wild-type strains in mixed infections of tolerant zucchini, but they presented a drastic fitness loss in mixed infections of susceptible zucchini or melon. Thus, the ability to induce severe symptoms in tolerant zucchini is related to a genetic load in susceptible zucchini, but also on other susceptible hosts. This represents the first quantitative study of the fitness cost associated with tolerance breaking for a plant virus. Thus, although easily broken, the tolerance might prove durable in some conditions if the aggressive variants are counterselected in susceptible crops.


2009 ◽  
Vol 35 (3) ◽  
pp. 223-225 ◽  
Author(s):  
José Segundo Giampan ◽  
Jorge Alberto Marques Rezende ◽  
Sônia Maria De Stefano Piedade

O ZLCV é um tospovírus encontrado com freqüência causando severos danos em cucurbitáceas. Nesse trabalho avaliaram-se os danos causados pelo ZLCV em abobrinha de moita 'Caserta', em campo na ESALQ/USP, Piracicaba-SP, onde esse vírus é freqüente. Plantas obtidas pela semeadura direta foram monitoradas periodicamente quanto à infecção pelo ZLCV por meio dos sintomas e por PTA-ELISA. Monitorou-se ainda a contaminação com Papaya ringspot virus - type W e Zucchini yellow mosaic virus, desconsiderando a produção dessas plantas. As plantas foram agrupadas em função da época de aparecimento dos sintomas do ZLCV, avaliando a produção de frutos comerciais (FC) e não comerciais (FNC) de cada grupo e comparando com a de plantas que permaneceram sem sintomas até o final do experimento. As plantas que apresentaram sintomas até os 23 dias após a emergência (DAE) não produziram qualquer tipo de frutos. FC foram colhidos de plantas que apresentaram sintomas a partir dos 42 DAE. Mesmo assim, houve redução de 78,5 % na produção de FC. Plantas que mostraram sintomas por ocasião da última colheita (55 DAE) apresentaram redução na produção de FC de 9,6 %. A infecção com o ZLCV até o início da frutificação inviabiliza a produção de FC de abobrinha de moita 'Caserta'.


Sign in / Sign up

Export Citation Format

Share Document