scholarly journals First Report of Laurel Wilt Disease Caused by Raffaelea lauricola on Sassafras in Virginia

Plant Disease ◽  
2022 ◽  
Author(s):  
Romina Gazis ◽  
Katlin M. DeWitt ◽  
Lara K. Johnson ◽  
Lori A. Chamberlin ◽  
Aaron H. Kennedy ◽  
...  

Laurel wilt is a lethal vascular disease affecting native Lauraceae in North America. The causal fungus, Raffaelea lauricola T.C. Harr., Fraedrich & Aghayeva and its symbiont, redbay ambrosia beetle, Xyleborus glabratus Eichhoff are native to Asia (Fraedrich et al. 2008, Harrington et al. 2008). Since their introduction near Savannah, Georgia in 2002 (Fraedrich et al. 2008), laurel wilt has spread rapidly, resulting in extensive mortality of native redbay (Persea borbonia [L.] Spreng.) [Hughes et al. 2017] and is a threat to other native Lauraceae, such as sassafras (Sassafras albidum [Nutt.] Nees) (Bates et al. 2013) and northern spicebush (Lindera benzoin [L.] Blume) [Olatinwo et al. 2021]. In June 2021 a sassafras sapling showing wilt and dieback was observed along a roadside in Scott County, Virginia, which borders a laurel wilt-positive Tennessee county (Loyd et al. 2020). The trunk (approximately 5 cm diameter) was submitted to the Virginia Tech Plant Clinic. Although beetle holes were observed, X. glabratus was not found. Discolored sapwood chips were excised and plated on malt extract agar amended with cycloheximide (200 ppm) and streptomycin (100 ppm) [CSMA]. A fungus was consistently recovered and the morphology of conidiophores and conidia, and presence of blastoconidia and mucoid growth, aligned with the description of R. lauricola (Harrington et al. 2008). Two R. lauricola-specific primer sets (Dreaden et al. 2014) were used to amplify DNA extracted from a representative isolate (0248-2021) and confirm R. lauricola. For further confirmation, the LSU region of the rDNA was sequenced (Lloyd et al. 2020). The sequence of the isolate (GenBank accession no. OL583842) showed 100% identity (573/573 bp) to R. lauricola ex-type strain sequence, CBS 121567 (accession no. MH877762) (Harrington et al. 2008, Vu et al. 2018). The isolate was also confirmed by the National Identification Services by sequencing. To confirm pathogenicity, 15 sassafras seedlings (height = 60-100 cm, diameter = 8-10 mm) were inoculated with a conidial suspension harvested from 10-day CSMA cultures of 0248-2021, as follows: two 0.4 mm diameter holes were drilled 10 cm above the soil line at a 45° angle on opposite sides of the stem, leaving at least 3 cm between holes. Ten µl of the conidial suspension (5 x 107/ml) was transferred into each hole and sealed with parafilm. Two sassafras seedlings were inoculated with sterile water. Seedlings were maintained with 12 h photoperiod at 27° ± 2° C. Off-color foliage and loss of turgor were observed 10 days post-inoculation on conidia-inoculated seedlings; at two weeks, these were completely wilted and had sapwood discoloration. Water-inoculated plants showed no symptoms. Sapwood from 15 cm above the inoculation point was excised from 0248-2021-inoculated plants (n=2) and water-inoculated plants (n=1) and plated on CSMA. R. lauricola was recovered from symptomatic plants, but not from water-inoculated plants. The identity of the recovered fungus was confirmed with two species-specific primers sets (Dreaden et al. 2014). It is likely that laurel wilt is more prevalent in the area of the roadside find. Both sassafras and northern spicebush are widespread in Virginia and their range extends into the northeastern US and lower Canada. Laurel wilt poses a serious threat to these species and their ecosystems. For example, spicebush and sassafras are primary hosts of the native spicebush swallowtail butterfly (Papilio troilus L.) [Nitao et al. 1991].

2019 ◽  
Vol 20 (4) ◽  
pp. 220-228 ◽  
Author(s):  
Rabiu Olatinwo ◽  
Stephen Fraedrich

Laurel wilt is a destructive disease of redbay (Persea borbonia) and other species in the laurel family (Lauraceae). It is caused by Raffaelea lauricola, a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae), cointroduced into the United States around 2002. During assessments of fungi associated with bark beetles from loblolly pine, an unknown fungus was isolated that appeared to have broad-spectrum antifungal activities. In this study, we identified the unknown fungus and determined the inhibitory effect of its secondary metabolites on R. lauricola. DNA analysis identified the fungus as Acaromyces ingoldii (GenBank accession no. EU770231). Secondary metabolites produced by the A. ingoldii completely inhibited R. lauricola mycelial growth on potato dextrose agar (PDA) plates preinoculated with A. ingoldii and reduced R. lauricola growth significantly on malt extract agar plates preinoculated with A. ingoldii. R. lauricola isolates inoculated on PDA plates 7 days after A. ingoldii were completely inhibited with no growth or spore germination. Direct evaluation of A. ingoldii crude extract on R. lauricola spores in a multi-well culture plate assay showed inhibition of spore germination at 10% and higher concentrations. Secondary metabolites from A. ingoldii could be potentially useful in managing the future spread of laurel wilt.


Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1469-1469 ◽  
Author(s):  
S. W. Fraedrich

Extensive mortality of redbay (Persea borbonia (L.) Spreng.) has been observed in the southeastern United States since 2003. The mortality is due to laurel wilt caused by Raffaelea lauricola T. C. Harr., Fraedrich & Aghayeva, a fungal symbiont of the recently introduced redbay ambrosia beetle (RAB), Xyleborus glabratus Eichhoff (1,2). The wilt is known to affect other members of the Lauraceae including sassafras (Sassafras albidum (Nuttall) Nees) and avocado (Persea americana Mill.) (1,3). Two inoculation experiments were conducted to evaluate the susceptibility of California laurel (Umbellularia californica (Hook. & Arn.) Nutt.) to R. lauricola. Seedlings, averaging 73 cm high and 13 mm in diameter, were wounded with a drill bit (2.8 mm) to a depth of one-half the diameter of the stems. In each experiment, 10 seedlings were inoculated with one of two isolates of R. lauricola (five seedlings per isolate) obtained as previously described (1) from wilted redbays on Hilton Head Island, South Carolina and Fort George Island, Florida. In the first experiment, seedlings were inoculated with spore suspensions (0.1 ml) ranging from 1.9 to 2.3 × 106 spores/ml and produced as previously described (1). In the second experiment, seedlings were inoculated with mycelial plugs obtained from the edge of 10-day-old cultures growing on malt extract agar (MEA). Five seedlings in each experiment served as controls and were inoculated with sterile deionized water or plugs of sterile MEA. Inoculation points were wrapped with Parafilm M (Pechiney Plastic Packaging, Menasha, WI). Seedlings were grown in growth chambers (daytime temperature 26°C, nighttime 24°C, and a 15-h photoperiod) for 13 to 15 weeks. At the end of the first experiment, 7 of 10 seedlings inoculated with R. lauricola exhibited wilt that appeared as a dieback of a few to the majority of branches. Nine of the ten seedlings exhibited sapwood discoloration and the fungus was isolated from eight of these seedlings. At the end of the second experiment, 8 of 10 seedlings exhibited wilt that again appeared as a dieback of a few branches to most branches. All seedlings with wilt exhibited sapwood discoloration and the fungus was recovered from these seedlings. Two seedlings inoculated with R. lauricola exhibited no symptoms of disease and the fungus was not recovered. Control seedlings remained healthy in both experiments with no evidence of wilt or sapwood discoloration and R. lauricola was not isolated. These results indicate that California laurel is susceptible to laurel wilt caused by R. lauricola. Furthermore, the disease on California laurel may appear as a branch dieback affecting individual branches one at a time rather than a rapid wilt of the entire crown as is often observed in redbay (1). Currently, the RAB is not known to occur on the West Coast and it is also not known if this beetle is capable of attacking and producing brood on California laurel. Nonetheless, if the RAB and R. lauricola become established on the West Coast, laurel wilt could pose a serious threat to natural ecosystems as well as the avocado industry in California. References: (1) S. W. Fraedrich et al. Plant Dis. 92:215, 2008. (2) T. C. Harrington et al. Mycotaxon 104:399, 2008. (3) A. E. Mayfield, III et al. Plant Dis. 92:976, 2008.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1479-1479 ◽  
Author(s):  
J. J. Riggins ◽  
S. W. Fraedrich ◽  
T. C. Harrington

Laurel wilt is caused by the fungus Raffaelea lauricola T.C. Harrin., Aghayeva & Fraedrich and is lethal to redbay (Persea borbonia (L.) Spreng.), sassafras (Sassafras albidum (Nutt.) Nees), and other species in the Lauraceae (1). The fungus is carried by the redbay ambrosia beetle (Xyleborus glabratus Eichh.), which is native to Asia. After being discovered in Georgia in 2002 (1), X. glabratus and R. lauricola have spread rapidly, causing extensive redbay mortality in South Carolina, Georgia, Florida, and Mississippi (1,4). The disease has also been confirmed on sassafras in Florida, South Carolina (1), and Georgia. Questions remain as to whether laurel wilt will continue to spread on sassafras, which often occurs as scattered trees in the eastern United States. In June 2010, a homeowner reported that a sassafras tree north of Van Cleave, MS (30.668°N, 88.686°W) had begun wilting in late May. This landscape tree had three 10-m high stems (~20 cm in diameter at breast height). Dark staining in the xylem was observed around the entire circumference of all three stems and nearly all leaves were bronze colored and wilted. No ambrosia beetle tunnels were observed in the stems. No other symptomatic Lauraceae were encountered in the wooded area within 300 m. The nearest known location with laurel wilt on redbay was ~15 km away (4). A Lindgren funnel trap baited with manuka oil (2) was placed at the site in June and monitored biweekly until November, but no X. glabratus adults were captured. Chips from discolored xylem of the sassafras were surface sterilized, plated on cycloheximide-streptomycin malt agar, and R. lauricola was readily isolated (1). Identity of the fungus (isolate C2792 in collection of T. Harrington) was confirmed by using partial sequences of the 28S rDNA (3). The sassafras sequence was identical to that of all known sequences of R. lauricola in the United States, including GenBank No. EU123076 (the holotype isolate from redbay). To confirm pathogenicity, isolate C2792 was grown on malt extract agar and three redbay (average: 141 cm high and 12 mm in diameter at soil interface) and three sassafras (average: 170 cm high and 17 mm in diameter at soil interface) potted plants were wound inoculated with 0.2 ml of a spore suspension (4.9 × 106 conidia/ml) (1). Three control plants of each species were inoculated with sterile deionized water. After 8 weeks in a growth chamber at 26°C, all inoculated redbay and sassafras plants exhibited xylem discoloration above and below the inoculation point, two of the redbay and two of the sassafras had died, and the other plant of each species exhibited partial wilt (the main terminal or one or more branches). All control plants were asymptomatic. R. lauricola was reisolated from all inoculated symptomatic plants but not from controls. To our knowledge, this is the first report of laurel wilt on sassafras in Mississippi. Both redbay (4) and sassafras appear to be highly susceptible to the disease as it moves westward. Sassafras is less attractive than redbay to X. glabratus and it was thought that this might contribute to slowing the spread of laurel wilt once outside the range of redbay (2). Nonetheless, our observations confirm that sassafras can be infected where laurel wilt on redbay is not in the immediate vicinity. References: (1) S. W. Fraedrich et al. Plant Dis. 92:215, 2008. (2) J. L. Hanula et al. J. Econ. Entomol. 101:1276, 2008. (3) T. C. Harrington et al. Mycotaxon 111:337, 2010. (4) J. J. Riggins et al. Plant Dis. 94:634, 2010.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 181
Author(s):  
Rabiu O. Olatinwo ◽  
Stephen W. Fraedrich ◽  
Albert E. Mayfield

In recent years, outbreaks of nonnative invasive insects and pathogens have caused significant levels of tree mortality and disturbance in various forest ecosystems throughout the United States. Laurel wilt, caused by the pathogen Raffaelea lauricola (T.C. Harr., Fraedrich and Aghayeva) and the primary vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff), is a nonnative pest-disease complex first reported in the southeastern United States in 2002. Since then, it has spread across eleven southeastern states to date, killing hundreds of millions of trees in the plant family Lauraceae. Here, we examine the impacts of laurel wilt on selected vulnerable Lauraceae in the United States and discuss management methods for limiting geographic expansion and reducing impact. Although about 13 species belonging to the Lauraceae are indigenous to the United States, the highly susceptible members of the family to laurel wilt are the large tree species including redbay (Persea borbonia (L.) Spreng) and sassafras (Sassafras albidum (Nutt.) Nees), with a significant economic impact on the commercial production of avocado (Persea americana Mill.), an important species native to Central America grown in the United States. Preventing new introductions and mitigating the impact of previously introduced nonnative species are critically important to decelerate losses of forest habitat, genetic diversity, and overall ecosystem value.


2021 ◽  
Author(s):  
Stephen Fraedrich

Abstract Laurel wilt is responsible for the death of hundreds of millions of redbay (Persea borbonia sensu lato) trees throughout the southeastern USA, and the disease is also having significant effects on other species such as sassafras (Sassafras albidum) in natural ecosystems and avocado (Persea americana) in commercial production areas of south Florida. Laurel wilt is caused by the pathogen Raffaelea lauricola, a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus. Thus far, the disease is confined to members of the Lauraceae that are native to the USA, or native to such places as the Caribbean, Central America and Europe and grown in the USA. The beetle and fungus are native to Asia and were likely introduced with untreated solid wood packing material at Port Wentworth, Georgia in the early 2000s. Since that time laurel wilt has spread rapidly in the coastal plains of the southeastern USA, spreading north into central North Carolina, as far west as Texas, and reaching the southernmost counties of Florida. Current models suggest that X. glabratus can tolerate temperature conditions that occur throughout much of the eastern USA, and so the disease threatens sassafras throughout much of this region. The disease poses a threat to lauraceous species indigenous to other areas of the Americas as well as Europe and Africa.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 37 ◽  
Author(s):  
Tyler J. Dreaden ◽  
Marc A. Hughes ◽  
Randy C. Ploetz ◽  
Adam Black ◽  
Jason A. Smith

Laurel wilt is caused by the fungus Raffaelea lauricola T.C. Harr., Fraedrich and Aghayeva, a nutritional symbiont of its vector the redbay ambrosia beetle, Xyleborus glabratus Eichhoff. Both are native to Asia but appeared in Georgia in the early 2000s. Laurel wilt has since spread to much of the southeastern United States killing >300 million host trees in the Lauraceae plant family. The aims of this research were to elucidate the genetic structure of populations of R. lauricola, to examine its reproductive strategy, and determine how often the pathogen had been introduced to the USA. A panel of 12 simple sequence repeat (SSR) markers identified 15 multilocus genotypes (MLGs) in a collection of 59 isolates from the USA (34 isolates), Myanmar (18), Taiwan (6) and Japan (1). Limited diversity in the USA isolates and the presence of one MAT idiotype (mating type locus) indicated that R. lauricola was probably introduced into the country a single time. MLG diversity was far greater in Asia than the USA. Only three closely related MLGs were detected in the USA, the most prevalent of which (30 of 34 isolates) was also found in Taiwan. Although more work is needed, the present results suggest that a Taiwanese origin is possible for the population of R. lauricola in the USA. Isolates of R. lauricola from Myanmar were distinct from those from Japan, Taiwan and the USA. Although both MAT idiotypes were present in Myanmar and Taiwan, only the population from Taiwan had the genetic structure of a sexually reproducing population.


Plant Disease ◽  
2016 ◽  
Vol 100 (11) ◽  
pp. 2330 ◽  
Author(s):  
S. W. Fraedrich ◽  
T. C. Harrington ◽  
B. A. McDaniel ◽  
G. S. Best

2019 ◽  
Vol 113 (2) ◽  
pp. 980-987
Author(s):  
Paul E Kendra ◽  
Wayne S Montgomery ◽  
Teresa I Narvaez ◽  
Daniel Carrillo

Abstract Laurel wilt and Fusarium dieback are vascular diseases caused by fungal symbionts of invasive ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). Both diseases threaten avocado trees in Florida. Redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of the laurel wilt pathogen, Raffaelea lauricola, but in recent years this symbiont has been transferred laterally to at least nine other species of ambrosia beetle, which now comprise a community of secondary vectors. Dieback disease, caused by Fusarium spp. fungi, is spread by shot hole borers in the Euwallacea fornicatus species complex. In this study, we conducted field tests in Florida avocado groves to compare efficacy of four trap designs for detection of Scolytinae. Treatments included an 8-funnel Lindgren trap, black 3-vane flight interception trap, green 3-vane interception trap, white sticky panel trap, and an unbaited sticky panel (control). In two tests targeting E. nr. fornicatus and X. glabratus, traps were baited with a two-component lure (α-copaene and quercivorol). In a test targeting other species, traps were baited with a low-release ethanol lure. For E. nr. fornicatus, sticky panels and black interception traps captured significantly more beetles than Lindgren traps; captures with green traps were intermediate. With ethanol-baited traps, 20 species of bark/ambrosia beetle were detected. Trap efficacy varied by species, but in general, sticky traps captured the highest number of beetles. Results indicate that sticky panel traps are more effective for monitoring ambrosia beetles than Lindgren funnel traps, the current standard, and may provide an economical alternative for pest detection in avocado groves.


2018 ◽  
Vol 16 (1) ◽  
pp. 393-400 ◽  
Author(s):  
Paul E. Kendra ◽  
Wayne S. Montgomery ◽  
Jerome Niogret ◽  
Nurhayat Tabanca ◽  
David Owens ◽  
...  

AbstractRedbay ambrosia beetle, Xyleborus glabratus, is native to Southeast Asia, but subsequent to introduction in Georgia in 2002, it has become a serious invasive pest in the USA, now established in nine southeastern states. Females vector Raffaelea lauricola, the fungus that causes laurel wilt, a lethal vascular disease of trees in the family Lauraceae. Laurel wilt has caused extensive mortality in native Persea species, including redbay (P. borbonia), swampbay (P. palustris), and silkbay (P. humilis). Avocado (P. americana) is now impacted in Florida, and with continued spread, laurel wilt has potential to affect avocado and native Lauraceae in California, Mexico, and throughout the American tropics. Effective lures for detection and control of X. glabratus are critical to slow the spread of laurel wilt. No pheromones are known for this species; primary attractants are volatile terpenoids emitted from host Lauraceae. This report provides a concise summary of the chemical ecology of X. glabratus, highlighting research to identify kairomones used by females for host location. It summarizes development of essential oil lures for pest detection, including discussions of the initial use of phoebe and manuka oil lures, the current cubeb oil lure, and a newly-developed distilled oil lure enriched in (-)-α-copaene.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 688-688 ◽  
Author(s):  
C. A. Bates ◽  
S. W. Fraedrich ◽  
T. C. Harrington ◽  
R. S. Cameron ◽  
R. D. Menard ◽  
...  

Laurel wilt, caused by Raffaelea lauricola, a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus, is responsible for extensive mortality of native redbays (Persea borbonia and P. palustris) in the coastal plains of the southeastern United States (1). The wilt also affects the more widespread sassafras, Sassafras albidum, particularly in areas where diseased redbays are common and populations of X. glabratus are high. Because sassafras stems were thought to lack chemicals that are attractive to the beetle, and sassafras tends to be widely scattered in forests, it was believed that the advance of the laurel wilt epidemic front might slow once it reached the edge of the natural range of redbay, which is restricted to the coastal plains of the Gulf and Atlantic Coasts (2). In July and August of 2011, wilt-like symptoms (i.e., wilted and dead leaves, and streaks of black discoloration in the xylem) were observed on 1 to 10 sassafras trees (15 to 23 cm diameter; 6 to 9 m height) at each of three locations, which were approximately 6 km from one another in Marengo Co., Alabama. Samples of the discolored wood from five trees were plated on malt agar amended with cycloheximide and streptomycin (CSMA), and a fungus morphologically identical to R. lauricola was isolated from each tree (1). For confirmation, a portion of the large subunit (28S) of the rDNA region of three of the isolates was sequenced (3); in each case, the sequence matched exactly that of other isolates of R. lauricola (EU123077) from the United States. Symptomatic trees were found at all three sites when revisited in April 2012, and approximately 20 sassafras trees in various stages of wilt were observed at one location, where only one diseased tree had been noted in 2011. Bolts were cut from the main stem of a symptomatic tree, and eggs, larvae, and adults of X. glabratus were commonly found in tunnels, and R. lauricola was isolated from the discolored xylem. Three container-grown sassafras saplings (mean height 193 cm, mean diameter 2.1 cm at groundline) were inoculated as previously described (1) with conidia (~600,000) from an isolate of R. lauricola. Three additional sassafras saplings were inoculated with sterile, deionized water, and all plants were placed in a growth chamber at 25°C with a 15-h photoperiod. Inoculated plants began to exhibit wilt symptoms within 14 days, and at 30 days all inoculated plants were dead and xylem discoloration was observed. Control plants appeared healthy and did not exhibit xylem discoloration. Pieces of sapwood from 15 cm above the inoculation points were plated on CSMA, and R. lauricola was recovered from all wilted plants but not from control plants. This is the first record of laurel wilt in Alabama and is significant because the disease appears to be spreading on sassafras in an area where redbays have not been recorded (see http://www.floraofalabama.org ). The nearest previously documented case of laurel wilt is on redbay and sassafras in Jackson Co., Mississippi (4), approximately 160 km to the south. The exact source of the introduction of X. glabratus and R. lauricola into Marengo Co. is not known. The vector may have been transported into the area with storms, moved with infested firewood, or shipped with infested timber by companies that supply mills in the area. References: (1) S. Fraedrich et al. Plant Dis. 92:215, 2008. (2) J. Hanula et al. Econ. Ent. 101:1276, 2008. (3) T. Harrington et al. Mycotaxon 111:337, 2010. (4) J. Riggins et al. Plant Dis. 95:1479, 2011.


Sign in / Sign up

Export Citation Format

Share Document