scholarly journals Green Mold Diseases of Agaricus and Pleurotus spp. Are Caused by Related but Phylogenetically Different Trichoderma Species

2007 ◽  
Vol 97 (4) ◽  
pp. 532-537 ◽  
Author(s):  
L. Hatvani ◽  
Z. Antal ◽  
L. Manczinger ◽  
A. Szekeres ◽  
I. S. Druzhinina ◽  
...  

Producers of champignon (Agaricus bisporus) and oyster mushroom (Pleurotus ostreatus) are facing recent incidents of green mold epidemics in Hungary. We examined 66 Trichoderma strains isolated from Agaricus compost and Pleurotus substrate samples from three Hungarian mushroom producing companies by a polymerase chain reaction-based diagnostic test for T. aggressivum, sequence analysis of the internal transcribed spacer region 1 (ITS1) and ITS2 and (selectively) of the fourth and fifth intron of translation elongation factor 1α (tef1α), and restriction fragment length polymorphism of mitochondrial DNA. Seven Trichoderma species were identified: T. aggressivum f. europaeum (17 isolates), T. harzianum (three isolates), T. longibrachiatum (four isolates), T. ghanense (one isolate), T. asperellum (four isolates), T. atroviride (nine isolates), and a still undescribed phylogenetic species, Trichoderma sp. DAOM 175924 (28 isolates). T. aggressivum f. europaeum was exclusively derived from A. bisporus compost, whereas Trichoderma sp. DAOM 175924 exclusively occurred in the substrate for Pleurotus cultivation. Sequences of the latter strains were co-specific with those for Trichoderma pathogens of P. ostreatus in Korea. The widespread occurrence of this new species raises questions as to why infections by it have just only recently been observed. Our data document that (i) green mold disease by T. aggressivum f. europaeum has geographically expanded to Central Europe; (ii) the green mold disease of P. ostreatus in Hungary is due to the same Trichoderma species as in Korea and the worldwide distribution of the new species indicates the possibility of spreading epidemics; and (iii) on mushroom farms, the two species are specialized on their different substrates.

Phytotaxa ◽  
2018 ◽  
Vol 364 (2) ◽  
pp. 181 ◽  
Author(s):  
MUNAZZA KIRAN ◽  
JUNAID KHAN ◽  
HASSAN SHER ◽  
DONALD H. PFISTER ◽  
ABDUL NASIR KHALID

A new species, Amanita griseofusca in section Vaginatae is described and illustrated here from Pakistan. Distinguishing characters of the new species include medium-sized basidiomata, greyish brown pileus surface with white to beige, membranous volval remnants present as one (large) to a few (small) warts, close lamellae which are cream colored with a pink tone, striations one third of the total pileus radius, broadly ellipsoidal to ellipsoidal basidiospores and white loose saccate volva turning beige at maturity. Molecular data inferred from partial nuc rDNA internal transcribed spacer region (ITS), partial nuc rDNA larger subunit region (LSU) and partial translation elongation factor 1-alpha (tef1) confirms the novelty of the present taxon.


MycoKeys ◽  
2019 ◽  
Vol 60 ◽  
pp. 45-67
Author(s):  
Xin-Cun Wang ◽  
Tie-Zhi Liu ◽  
Shuang-Lin Chen ◽  
Yi Li ◽  
Wen-Ying Zhuang

Helvella species are ascomycetous macrofungi with saddle-shaped or cupulate apothecia. They are distributed worldwide and play an important ecological role as ectomycorrhizal symbionts. A recent multi-locus phylogenetic study of the genus suggested that the cupulate group of Helvella was in need of comprehensive revision. In this study, all the specimens of cupulate Helvella sensu lato with ribbed stipes deposited in HMAS were examined morphologically and molecularly. A four-locus phylogeny was reconstructed using partial sequences of the heat shock protein 90, nuclear rDNA internal transcribed spacer region 2, nuclear large subunit ribosomal DNA and translation elongation factor 1-α genes. Three clades were revealed in Helvella sensu stricto. Twenty species were included in the analysis, of which 13 are distributed in China. Three new species, H. acetabuloides, H. sichuanensis and H. tianshanensis, are described and illustrated in detail. A neotype was designated for H. taiyuanensis. Helvella calycina is a new record for China, while Dissingia leucomelaena should be excluded from Chinese mycota. Hsp90 and ITS2 are recommended as useful supplementary barcodes for species identifications of the genus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
María del Carmen H. Rodríguez ◽  
Harry C. Evans ◽  
Lucas M. de Abreu ◽  
Davi M. de Macedo ◽  
Miraine K. Ndacnou ◽  
...  

AbstractA survey for species of the genus Trichoderma occurring as endophytes of Coffea, and as mycoparasites of coffee rusts (Hemileia), was undertaken in Africa; concentrating on Cameroon and Ethiopia. Ninety-four isolates of Trichoderma were obtained during this study: 76 as endophytes of healthy leaves, stems and berries and, 18 directly from colonized rust pustules. A phylogenetic analysis of all isolates used a combination of three genes: translation elongation factor-1α (tef1), rpb2 and cal for selected isolates. GCPSR criteria were used for the recognition of species; supported by morphological and cultural characters. The results reveal a previously unrecorded diversity of Trichoderma species endophytic in both wild and cultivated Coffea, and mycoparasitic on Hemileia rusts. Sixteen species were delimited, including four novel taxa which are described herein: T. botryosum, T. caeruloviride, T. lentissimum and T. pseudopyramidale. Two of these new species, T. botryosum and T. pseudopyramidale, constituted over 60% of the total isolations, predominantly from wild C. arabica in Ethiopian cloud forest. In sharp contrast, not a single isolate of Trichoderma was obtained using the same isolation protocol during a survey of coffee in four Brazilian states, suggesting the existence of a ‘Trichoderma void’ in the endophyte mycobiota of coffee outside of Africa. The potential use of these African Trichoderma isolates in classical biological control, either as endophytic bodyguards—to protect coffee plants from Hemileia vastatrix, the fungus causing coffee leaf rust (CLR)—or to reduce its impact through mycoparasitism, is discussed, with reference to the on-going CLR crisis in Central America.


2011 ◽  
Vol 43 (5) ◽  
pp. 445-466 ◽  
Author(s):  
Toby SPRIBILLE ◽  
Bernard GOFFINET ◽  
Barbara KLUG ◽  
Lucia MUGGIA ◽  
Walter OBERMAYER ◽  
...  

AbstractThe crustose lichen genus Mycoblastus in the Northern Hemisphere includes eight recognized species sharing large, simple ascospores produced 1–2 per ascus in strongly pigmented biatorine apothecia. The monophyly of Mycoblastus and the relationship of its various species to Tephromelataceae have never been studied in detail. Data from ITS rDNA and the genes coding for translation elongation factor 1-α and DNA replication licensing factor mini-chromosome maintenance complex 7 support the distinctness of Mycoblastus s. str. from the core of the Tephromelataceae, but recover M. fucatus and an undescribed Asian species as strongly supported within the latter group. We propose accommodating these two species in a new genus, Violella, which is characterized by its brownish inner ascospore walls, Fucatus-violet hymenial pigment granules and secondary chemistry, and discuss the position of Violella relative to Calvitimela and Tephromela. We describe the new species Violella wangii T. Sprib. & Goffinet to accommodate a new species with roccellic acid from Bhutan, China, India and the Russian Far East. We also exclude Mycoblastus indicus Awasthi & Agarwal from the genus Mycoblastus and propose for it the new combination Malmidea indica (Awasthi & Agarwal) Hafellner & T. Sprib.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lina Yang ◽  
Lingyun Wang ◽  
Jun Cao ◽  
Yuxin Zhu ◽  
Liang Zhang ◽  
...  

Peach shoot blight (PSB), which kills shoots, newly sprouted leaf buds and peach fruits, has gradually increased over the last ten years and has resulted in 30-50% of the total production loss of the peach industry in China. Phomopsis amygdali has been identified as the common causal agent of this disease. In this study, two new species, Phomopsis liquidambaris (strain JW18-2) and Diaporthe eres (strain JH18-2), were also pathogens causing PSB, as determined through molecular phylogenetic analysis based on the sequences of the internal transcribed spacer region (ITS), translation elongation factor 1-α (EF1-α) and beta-tubulin (TUB), and colony and conidial morphological characteristics. Biological phenotypic analysis showed that the colony growth rate of strain JW18-2 was faster than that of strains JH18-2 and ZN32 (one of the P. amygdali strains that we previously found and identified). All three strains produced α-conidia; however, JW18-2 could not produce β-conidia on alfalfa decoction and Czapek media, and the β-conidia produced by strain JH18-2 were shorter in length and thicker in width than those produced by strain ZN32. Pathogenicity tests showed that JW18-2 presented the strongest pathogenicity for peach fruits and twigs and was followed by strains JH18-2 and ZN32. The results shed light on the etiology of PSB and provide a warning that P. liquidambaris or D. eres might develop into dominant species after a few years, while also potentially benefitting the development of effective disease control management strategies.


Phytotaxa ◽  
2021 ◽  
Vol 508 (1) ◽  
Author(s):  
XU ZHANG ◽  
ZHI-QUN LIANG ◽  
SHUAI JIANG ◽  
CHANG XU ◽  
XIN-HUA FU ◽  
...  

Baorangia duplicatopora is described as a new species from Hainan Province, a tropical region of China. It is morphologically characterized by large to very large basidiomata with a dull rose red, rose pink to purplish red pileus, compound pores, pileus context near hymenophore and stipe context staining blue when injured, a red stipe, and cheilocystidia wider than those of other Baorangia species. Phylogenetic analyses of DNA sequences from part of the 28S gene, the nuc rDNA internal transcribed spacer (ITS) region, and part of the translation elongation factor 1-α gene (TEF1) also confirmed that B. duplicatopora forms an independent lineage within Baorangia. Detailed descriptions, color photographs of fresh basidiomata, and line drawings of microscopic features of the new species are presented. A key to species of Baorangia in the world is also provided.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1156-1165 ◽  
Author(s):  
M. A. Bautista-Cruz ◽  
G. Almaguer-Vargas ◽  
S. G. Leyva-Mir ◽  
M. T. Colinas-León ◽  
K. C. Correia ◽  
...  

Persian lime (Citrus latifolia Tan.) is an important and widely cultivated fruit crop in several regions of Mexico. In recent years, severe symptoms of gummosis, stem cankers, and dieback were detected in the Persian lime-producing region in the states of Veracruz and Puebla, Mexico. The aims of this study were to identify the species of Lasiodiplodia associated with these symptoms, determine the distribution of these species, and test their pathogenicity and virulence on Persian lime plants. In 2015, symptomatic samples were collected from 12 commercial Persian lime orchards, and 60 Lasiodiplodia isolates were obtained. Fungal identification of 32 representative isolates was performed using a phylogenetic analysis based on DNA sequence data of the internal transcribed spacer region and part of the translation elongation factor 1-α and β-tubulin genes. Sequence analyses were carried out using the Maximum Likelihood and Bayesian Inference methods. Six Lasiodiplodia species were identified as Lasiodiplodia pseudotheobromae, Lasiodiplodia theobromae, Lasiodiplodia brasiliense, Lasiodiplodia subglobosa, Lasiodiplodia citricola, and Lasiodiplodia iraniensis. All Lasiodiplodia species of this study are reported for the first time in association with Persian lime in Mexico and worldwide. L. pseudotheobromae (46.9% of isolates) was the most frequently isolated species followed by L. theobromae (28.1%) and L. brasiliense (12.5%). Pathogenicity on Persian lime young plants using a mycelial plug inoculation method showed that all identified Lasiodiplodia species were able to cause necrotic lesions and gummosis, but L. subglobosa, L. iraniensis, and L. pseudotheobromae were the most virulent.


Phytotaxa ◽  
2020 ◽  
Vol 440 (2) ◽  
pp. 89-100
Author(s):  
NABAHAT BESSADAT ◽  
BRUNO HAMON ◽  
NELLY BATAILLE-SIMONEAU ◽  
KIHAL MABROUK ◽  
PHILIPPE SIMONEAU

During a biodiversity survey of Alternaria associated with leaf spot and blight of Solanaceae, a large collection of strains was obtained from samples collected in north-western regions of Algeria in 2013–2018 growing seasons. Amongst these strains, three isolates recovered from tomato and potato had morphological traits different from that usually observed for Alternaria species previously reported on Solanaceae. Based on analysis of a sequence dataset corresponding to portions of the glyceraldehyde-3-phosphate dehydrogenase (gpd), translation elongation factor 1-alpha (tef1) and RNA polymerase second largest subunit (rpb2) genes along with morphological observations, isolates were identified as a new species in the section Japonicae. This novel species, described here as Alternaria telliensis, is phylogenetically and morphologically distinct from A. japonica and A. nepalensis in this section. Pathogenicity tests were performed and isolates were found to be weakly pathogenic to tomato and potato (Solanaceae) while highly aggressive on radish, cabbage and turnip (Brassicaceae) plants.


Phytotaxa ◽  
2015 ◽  
Vol 226 (3) ◽  
pp. 261 ◽  
Author(s):  
Liu Gao ◽  
Zhuoya Wei ◽  
Bo Wang ◽  
Mark L. Gleason ◽  
Rong Zhang ◽  
...  

Scleroramularia is a genus that includes species of the sooty blotch and flyspeck (SBFS) fungal complex that blemishes the surface of apple, pawpaw, and other fruit. In a survey of SBFS on banana (Musa basjoo), an isolate associated with the flyspeck mycelial type of SBFS was obtained from Zhanjiang, Guangdong, China. Based on analysis of morphology and phylogeny (the nuclear ribosomal internal transcribed space region and translation elongation factor 1-alpha), it was delimited as a new species of Scleroramularia, described here as S. musae. Conidia of S. musae have more septa than other species presently known in the genus.


2020 ◽  
Vol 11 ◽  
Author(s):  
Indunil C. Senanayake ◽  
Jayarama D. Bhat ◽  
Ratchadawan Cheewangkoon ◽  
Ning Xie

A survey of bambusicolous fungi in Bijiashan Mountain Park, Shenzhen, Guangdong Province, China, revealed several Arthrinium-like taxa from dead sheaths, twigs, and clumps of Bambusa species. Phylogenetic relationships were investigated based on morphology and combined analyses of the internal transcribed spacer region (ITS), large subunit nuclear ribosomal DNA (LSU), beta tubulin (β-tubulin), and translation elongation factor 1-alpha (tef 1-α) gene sequences. Based on morphological characteristics and phylogenetic data, Arthrinium acutiapicum sp. nov. and Arthrinium pseudorasikravindrae sp. nov. are introduced herein with descriptions and illustrations. Additionally, two new locality records of Arthrinium bambusae and Arthrinium guizhouense are described and illustrated.


Sign in / Sign up

Export Citation Format

Share Document