scholarly journals Synaptic Density in the Inner Molecular Layer of the Hippocampal Dentate Gyrus in Alzheimer Disease

1998 ◽  
Vol 57 (12) ◽  
pp. 1146-1153 ◽  
Author(s):  
STEPHEN W. SCHEFF ◽  
DOUGLAS A. PRICE
2019 ◽  
Vol 19 (1) ◽  
pp. 128-141 ◽  
Author(s):  
Hazal Haytural ◽  
Georgios Mermelekas ◽  
Ceren Emre ◽  
Saket Milind Nigam ◽  
Steven L. Carroll ◽  
...  

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.


2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


2008 ◽  
Vol 86 (5) ◽  
pp. 249-256 ◽  
Author(s):  
Takashi Kubota ◽  
Itsuki Jibiki ◽  
Akira Ishikawa ◽  
Tomomi Kawamura ◽  
Sonoko Kurokawa ◽  
...  

We previously found that 20 mg/kg clozapine i.p. potentiated the excitatory synaptic responses elicited in the dentate gyrus by single electrical stimulation of the perforant path in chronically prepared rabbits. We called this phenomenon clozapine-induced potentiation and proved that it was an NMDA receptor-mediated event. This potentiation is presumably related to clozapine’s clinical effect on negative symptoms and cognitive dysfunctions in schizophrenia. In the present study, to investigate the mechanisms underlying clozapine-induced potentiation, we examined whether extracellular dopamine and 5-HT levels changed during the potentiation by using a microdialysis technique in the dentate gyrus. The extracellular concentrations of dopamine and 5-HT levels were measured every 5 min during all experiments. Extracellular 5-HT levels did not change, but dopamine levels eventually increased significantly during clozapine-induced potentiation. The increase in the dopamine levels occurred almost simultaneously with the induction of clozapine-induced potentiation. These results suggest that clozapine-induced potentiation is at least partly attributable to a dopamine-mediated potentiation of excitatory synaptic transmission. The present study implies that such phenomena occur also in the perforant path–dentate gyrus pathway.


2009 ◽  
Vol 111 (6) ◽  
pp. 1237-1247 ◽  
Author(s):  
László Seress ◽  
Hajnalka Ábrahám ◽  
Zsolt Horváth ◽  
Tamás Dóczi ◽  
József Janszky ◽  
...  

Object Hippocampal sclerosis can be identified in most patients with mesial temporal lobe epilepsy (TLE). Surgical removal of the sclerotic hippocampus is widely performed to treat patients with drug-resistant mesial TLE. In general, both epilepsy-prone and epilepsy-resistant neurons are believed to be in the hippocampal formation. The hilar mossy cells of the hippocampal dentate gyrus are usually considered one of the most vulnerable types of neurons. The aim of this study was to clarify the fate of mossy cells in the hippocampus in epileptic humans. Methods Of the 19 patients included in this study, 15 underwent temporal lobe resection because of drug-resistant TLE. Four patients were used as controls because they harbored tumors that had not invaded the hippocampus and they had experienced no seizures. Histological evaluation of resected hippocampal tissues was performed using immunohistochemistry. Results Mossy cells were identified in the control as well as the epileptic hippocampi by using cocaine- and amphetamine-regulated transcript peptide immunohistochemistry. In most cases the number of mossy cells was reduced and thorny excrescences were smaller in the epileptic hippocampi than in controls; however, there was a significant loss of pyramidal cells and a partial loss of granule cells in the same epileptic hippocampi in which mossy cell loss was apparent. The loss of mossy cells could be correlated with the extent of hippocampal sclerosis, patient age at seizure onset, duration of epilepsy, and frequency of seizures. Conclusions In many cases large numbers of mossy cells were present in the hilus of the dentate gyrus when most pyramidal neurons of the CA1 and CA3 areas of the Ammon's horn were lost, suggesting that mossy cells may not be more vulnerable to epileptic seizures than the hippocampal pyramidal neurons.


Sign in / Sign up

Export Citation Format

Share Document