Multiple Cranial Neuropathies and Pachymeningitis in a Patient With a Pathogenic Nucleotide-Binding Oligomerization Domain 2 Polymorphism

2021 ◽  
Vol 41 (4) ◽  
pp. 547-552
Author(s):  
Sravanthi Vegunta ◽  
John Bohnsack ◽  
Alison Crum ◽  
Kathleen Digre ◽  
Bradley Katz ◽  
...  
FEBS Journal ◽  
2020 ◽  
Vol 287 (10) ◽  
pp. 2055-2069
Author(s):  
Min‐Young Kwon ◽  
Narae Hwang ◽  
Sung Hoon Back ◽  
Seon‐Jin Lee ◽  
Mark A. Perrella ◽  
...  

2018 ◽  
Vol 39 (5) ◽  
pp. 1447-1484 ◽  
Author(s):  
Sanja Nabergoj ◽  
Irena Mlinarič‐Raščan ◽  
Žiga Jakopin

2020 ◽  
Vol 11 ◽  
Author(s):  
Bernát Nógrádi ◽  
Ádám Nyúl-Tóth ◽  
Mihály Kozma ◽  
Kinga Molnár ◽  
Roland Patai ◽  
...  

Neuronal injuries are accompanied by release and accumulation of damage-associated molecules, which in turn may contribute to activation of the immune system. Since a wide range of danger signals (including endogenous ones) are detected by the nucleotide-binding oligomerization domain-, LRR- and pyrin domain-containing protein 3 (NLRP3) pattern recognition receptor, we hypothesized that NLRP3 may become activated in response to motor neuron injury. Here we show that peripheral injury of the oculomotor and the hypoglossal nerves results in upregulation of NLRP3 in corresponding motor nuclei in the brainstem of mice. Although basal expression of NLRP3 was observed in microglia, astroglia and neurons as well, its upregulation and co-localization with apoptosis-associated speck-like protein containing a caspase activation and recruitment domain, suggesting inflammasome activation, was only detected in neurons. Consequently, increased production of active pro-inflammatory cytokines interleukin-1β and interleukin-18 were detected after hypoglossal nerve axotomy. Injury-sensitive hypoglossal neurons responded with a more pronounced NLRP3 upregulation than injury-resistant motor neurons of the oculomotor nucleus. We further demonstrated that the mitochondrial protector diazoxide was able to reduce NLRP3 upregulation in a post-operative treatment paradigm. Our results indicate that NLRP3 is activated in motoneurons following acute nerve injury. Blockade of NLRP3 activation might contribute to the previously observed anti-inflammatory and neuroprotective effects of diazoxide.


Sign in / Sign up

Export Citation Format

Share Document