scholarly journals Straight as an arrow: humpback whales swim constant course tracks during long-distance migration

2011 ◽  
Vol 7 (5) ◽  
pp. 674-679 ◽  
Author(s):  
Travis W. Horton ◽  
Richard N. Holdaway ◽  
Alexandre N. Zerbini ◽  
Nan Hauser ◽  
Claire Garrigue ◽  
...  

Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored.

2020 ◽  
pp. 95-99
Author(s):  
Judith Allen ◽  
Carole Carlson ◽  
Peter T. Stevick

The Antarctic Humpback Whale Catalogue (AHWC) is an international collaborative project investigating movement patterns of humpback whales in the Southern Ocean and corresponding lower latitude waters. The collection contains records contributed by 261 researchers and opportunistic sources. Photographs come from all of the Antarctic management areas, the feeding grounds in southern Chile and also most of the known or suspected low-latitude breeding areas and span more than two decades. This allows comparisons to be made over all of the major regions used by  Southern Hemisphere humpback whales. The fluke, left dorsal fin/flank and right dorsal fin/flank collections represent 3,655, 413 and 407 individual whales respectively. There were 194 individuals resighted in more than one year, and 82 individuals resighted in more than one region. Resightings document movement along the western coast of South America and movement between the Antarctic Peninsula and western coast of South America and Central America. A single individual from Brazil was resighted off South Georgia, representing the first documented link between the Brazilian breeding ground and any feeding area. A second individual from Brazil was resighted off Madagascar, documenting long distance movement of a female between non-adjacent breeding areas. Resightings also include two matches between American Samoa and the Antarctic Peninsula, documenting the first known feeding site for American Somoa and setting a new long distance seasonal migration record. Three matches between Sector V and eastern Australia support earlier evidence provided by Discovery tags. Multiple resightings of individuals in the Antarctic Peninsula during more than one season indicate that humpback whales in this area show some degree of regional feeding area fidelity. The AHWC provides a powerful non-lethal and non-invasive tool for investigating the movements and population structure of the whales utilising the Southern Ocean Sanctuary. Through this methodical, coordinated comparison and maintenance of collections from across the hemisphere, large-scale movement patterns may be examined, both within the Antarctic, and from the Antarctic to breeding grounds at low latitudes.


2015 ◽  
Vol 33 (2) ◽  
pp. 39 ◽  
Author(s):  
C. Miller ◽  
A. Batibasiga ◽  
S. Sharma-Gounder ◽  
P. Solomona

Intensive commercial whaling caused significant declines in Southern Hemisphere humpback whale (Megaptera novaeangliae) populations. In Fiji, land-based humpback whale surveys undertaken from 1956 to 1958 documented maximum weekly counts of more than 150 humpback whales in parts of the Bligh waters. These records provide an invaluable point of comparison to present-day observations as they occurred immediately prior to very large humpback whale catches in Antarctic waters to the south – and on potential migration routes – of humpback whales breeding in Fijian waters. We report here on a three-year (2010–2012) land-based survey also conducted in the Bligh waters during which a total of 33 individuals over 480 h were counted from Ovalau Island and 68 individuals over approximately 300 h were observed from Makogai Island. These findings suggest a large decrease in numbers of humpback whales seen in Fiji waters since commercial whaling operations.


2021 ◽  
Vol 13 (12) ◽  
pp. 5469-5482
Author(s):  
Pierre Prandi ◽  
Jean-Christophe Poisson ◽  
Yannice Faugère ◽  
Amandine Guillot ◽  
Gérald Dibarboure

Abstract. We present a new Arctic sea level anomaly dataset based on the combination of three altimeter missions using an optimal interpolation scheme. Measurements from SARAL/AltiKa, CryoSat-2 and Sentinel-3A are blended together, providing an unprecedented resolution for this type of product. Such high-resolution products are necessary to tackle some contemporaneous science questions in the basin. We use the adaptive retracker to process both open ocean and lead echoes on SARAL/AltiKa, thus removing the need to estimate a bias between open ocean and ice-covered areas. The usual processing approach, involving an empirical retracking algorithm on specular echoes, is applied on CryoSat-2 and Sentinel-3A synthetic aperture radar (SAR) mode echoes. SARAL/AltiKa also provides the baseline for the cross-calibration of CryoSat-2 and Sentinel-3A data. The final gridded fields cover all latitudes north of 50∘ N, on a 25 km EASE2 grid, with one grid every 3 d over 3 years from July 2016 to April 2019. When compared to tide gauge measurements available in the Arctic Ocean, the combined product exhibits a much better performance than mono-mission datasets with a mean correlation of 0.78 and a mean root-mean-square deviation (RMSd) of 5 cm. The effective temporal resolution of the combined product is 3 times better than a single mission analysis. This dataset can be downloaded from https://doi.org/10.24400/527896/a01-2020.001 (Prandi, 2020).


2013 ◽  
Vol 280 (1752) ◽  
pp. 20122552 ◽  
Author(s):  
Gabriel J. Colbeck ◽  
Pierre Duchesne ◽  
Lianne D. Postma ◽  
Véronique Lesage ◽  
Mike O. Hammill ◽  
...  

Social structure involving long-term associations with relatives should facilitate the learning of complex behaviours such as long-distance migration. In and around Hudson Bay (Canada), three stocks of beluga whales form a panmictic unit, but have different migratory behaviours associated with different summering areas. We analysed genetic variation at 13 microsatellite loci among 1524 belugas, to test hypotheses about social structure in belugas. We found significant proportions of mother–offspring pairs throughout the migratory cycle, but average relatedness extended beyond close kinship only during migration. Average relatedness was significantly above random expectations for pairs caught at the same site but on different days or months of a year, suggesting that belugas maintain associations with a network of relatives during migration. Pairs involving a female (female–female or male–female) were on average more related than pairs of males, and males seemed to disperse from their matrilineal group to associate with other mature males. Altogether, our results indicate that relatives other than strictly parents, and especially females, play a role in maintaining a social structure that could facilitate the learning of migration routes. Cultural conservatism may limit contributions from nearby summer stocks to endangered stocks such as the Eastern Hudson Bay beluga.


2021 ◽  
Vol 16 (1) ◽  
pp. 33-39
Author(s):  
Iyari Janethzy Espinoza Rodríguez ◽  
Astrid Frisch Jordán ◽  
Fernando Noriega Betancourt

Banderas Bay, Mexico is an important breeding and transit area for the North Pacific humpback whale (Megaptera novaeangliae) population. In this paper we estimated relative abundance (RA = number of whales/hours of navigation) as a proxy to assess population temporary patterns in the area. We analyzed data from 14 breeding seasons (2004-2017), collected between December and March each winter. A total of 8,013 whales were observed in 1,394.6 navigation hours. Average seasonal RA was 5.7 whales per hour with a maximum of 7.5 (2013) and a minimum of 4.0 (2016). Sea surface temperature (SST) averaged 25.1°C and remained within the range considered optimal for humpback whale reproduction areas. SST showed no significant correlation with RA (r = 0.183). Inter-seasonal RA values suggested an increase throughout the study period, although the increase was not statistically significant (R = 0.32; R2 = 0.10; t = 1.15, p > 0.05). Intra-seasonal analyses showed that RA in December and January were significantly higher (U = 150, p < 0.05) than in February and March; this pattern was consistent throughout the seasons of study. These results represent a shift in the intra-seasonal abundance peak relative to previous studies when most whales were observed between January and February. It is important to recognize changes in population parameters of humpback whales in breeding areas to improve management practices. This study also highlights the potential of opportunistic platforms, such as whale watching tour boats, as viable sources of quality information, particularly in contexts when funding is limited.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jan-Olaf Meynecke ◽  
Jasper de Bie ◽  
Jan-Lukas Menzel Barraqueta ◽  
Elisa Seyboth ◽  
Subhra Prakash Dey ◽  
...  

Humpback whales, Megaptera novaeangliae, are a highly migratory species exposed to a wide range of environmental factors during their lifetime. The spatial and temporal characteristics of such factors play a significant role in determining suitable habitats for breeding, feeding and resting. The existing studies of the relationship between oceanic conditions and humpback whale ecology provide the basis for understanding impacts on this species. Here we have determined the most relevant environmental drivers identified in peer-reviewed literature published over the last four decades, and assessed the methods used to identify relationships. A total of 148 studies were extracted through an online literature search. These studies used a combined estimated 105,000 humpback whale observations over 1,216 accumulated study years investigating the relationship between humpback whales and environmental drivers in both Northern and Southern Hemispheres. Studies focusing on humpback whales in feeding areas found preferences for areas of upwelling, high chlorophyll-a concentration and frontal areas with changes in temperature, depth and currents, where prey can be found in high concentration. Preferred calving grounds were identified as shallow, warm and with slow water movement to aid the survival of calves. The few studies of migration routes have found preferences for shallow waters close to shorelines with moderate temperature and chlorophyll-a concentration. Extracting information and understanding the influence of key drivers of humpback whale behavioral modes are important for conservation, particularly in regard to expected changes of environmental conditions under climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Steven D. Miller ◽  
Steven H. D. Haddock ◽  
William C. Straka ◽  
Curtis J. Seaman ◽  
Cynthia L. Combs ◽  
...  

AbstractMilky seas are a rare form of marine bioluminescence where the nocturnal ocean surface produces a widespread, uniform and steady whitish glow. Mariners have compared their appearance to a daylit snowfield that extends to all horizons. Encountered most often in remote waters of the northwest Indian Ocean and the Maritime Continent, milky seas have eluded rigorous scientific inquiry, and thus little is known about their composition, formation mechanism, and role within the marine ecosystem. The Day/Night Band (DNB), a new-generation spaceborne low-light imager, holds potential to detect milky seas, but the capability has yet to be demonstrated. Here, we show initial examples of DNB-detected milky seas based on a multi-year (2012–2021) search. The massive bodies of glowing ocean, sometimes exceeding 100,000 km2 in size, persist for days to weeks, drift within doldrums amidst the prevailing sea surface currents, and align with narrow ranges of sea surface temperature and biomass in a way that suggests water mass isolation. These findings show how spaceborne assets can now help guide research vessels toward active milky seas to learn more about them.


2021 ◽  
Vol 13 (11) ◽  
pp. 2074
Author(s):  
Ryan R. Reisinger ◽  
Ari S. Friedlaender ◽  
Alexandre N. Zerbini ◽  
Daniel M. Palacios ◽  
Virginia Andrews-Goff ◽  
...  

Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.


2014 ◽  
Vol 11 (99) ◽  
pp. 20140542 ◽  
Author(s):  
Nathan F. Putman ◽  
Erica S. Jenkins ◽  
Catherine G. J. Michielsens ◽  
David L. G. Noakes

Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye ( Oncorhynchus nerka ) and pink ( Oncorhynchus gorbuscha ) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species.


2013 ◽  
Vol 9 (2) ◽  
pp. 841-858 ◽  
Author(s):  
C. Giry ◽  
T. Felis ◽  
M. Kölling ◽  
W. Wei ◽  
G. Lohmann ◽  
...  

Abstract. Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and δ18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Δδ18O records are used as a proxy for the oxygen isotopic composition of seawater (δ18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual δ18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual δ18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.


Sign in / Sign up

Export Citation Format

Share Document