scholarly journals Strategizing COVID-19 lockdowns using mobility patterns

2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Olha Buchel ◽  
Anton Ninkov ◽  
Danise Cathel ◽  
Yaneer Bar-Yam ◽  
Leila Hedayatifar

During the COVID-19 pandemic, governments have attempted to control infections within their territories by implementing border controls and lockdowns. While large-scale quarantine has been the most successful short-term policy, the enormous costs exerted by lockdowns over long periods are unsustainable. As such, developing more flexible policies that limit transmission without requiring large-scale quarantine is an urgent priority. Here, the dynamics of dismantled community mobility structures within US society during the COVID-19 outbreak are analysed by applying the Louvain method with modularity optimization to weekly datasets of mobile device locations. Our networks are built based on individuals' movements from February to May 2020. In a multi-scale community detection process using the locations of confirmed cases, natural break points from mobility patterns as well as high risk areas for contagion are identified at three scales. Deviations from administrative boundaries were observed in detected communities, indicating that policies informed by assumptions of disease containment within administrative boundaries do not account for high risk patterns of movement across and through these boundaries. We have designed a multi-level quarantine process that takes these deviations into account based on the heterogeneity in mobility patterns. For communities with high numbers of confirmed cases, contact tracing and associated quarantine policies informed by underlying dismantled community mobility structures is of increasing importance.

2020 ◽  
Vol 148 ◽  
Author(s):  
Lucy Li ◽  
Daniella Ross ◽  
Katherine Hill ◽  
Sarah Clifford ◽  
Louise Wellington ◽  
...  

Abstract We report two cases of respiratory toxigenic Corynebacterium diphtheriae infection in fully vaccinated UK born adults following travel to Tunisia in October 2019. Both patients were successfully treated with antibiotics and neither received diphtheria antitoxin. Contact tracing was performed following a risk assessment but no additional cases were identified. This report highlights the importance of maintaining a high index of suspicion for re-emerging infections in patients with a history of travel to high-risk areas outside Europe.


2020 ◽  
Vol 7 (12) ◽  
Author(s):  
Sei Harada ◽  
Shunsuke Uno ◽  
Takayuki Ando ◽  
Miho Iida ◽  
Yaoko Takano ◽  
...  

Abstract Background Nosocomial spread of coronavirus disease 2019 (COVID-19) causes clusters of infection among high-risk individuals. Controlling this spread is critical to reducing COVID-19 morbidity and mortality. We describe an outbreak of COVID-19 in Keio University Hospital, Japan, and its control and propose effective control measures. Methods When an outbreak was suspected, immediate isolation and thorough polymerase chain reaction (PCR) testing of patients and health care workers (HCWs) using an in-house system, together with extensive contact tracing and social distancing measures, were conducted. Nosocomial infections (NIs) were defined as having an onset or positive test after the fifth day of admission for patients and having high-risk contacts in our hospital for HCWs. We performed descriptive analyses for this outbreak. Results Between March 24 and April 24, 2020, 27 of 562 tested patients were confirmed positive, of whom 5 (18.5%) were suspected as NIs. For HCWs, 52 of 697 tested positive, and 40 (76.9%) were considered NIs. Among transmissions, 95.5% were suspected of having occurred during the asymptomatic period. Large-scale isolation and testing at the first sign of outbreak terminated NIs. The number of secondary cases directly generated by a single primary case found before March 31 was 1.74, compared with 0 after April 1. Only 4 of 28 primary cases generated definite secondary infection; these were all asymptomatic. Conclusions Viral shedding from asymptomatic cases played a major role in NIs. PCR screening of asymptomatic individuals helped clarify the pattern of spread. Immediate large-scale isolation, contact tracing, and social distancing measures were essential to containing outbreaks.


2021 ◽  
pp. 335-348
Author(s):  
Kai Ostwald ◽  
Tun Myint

This chapter examines how Myanmar faced distinct disadvantages in its ability to respond to the Covid-19 pandemic relative to regional neighbours. This is due to its continued grappling with simultaneous political, economic, and conflict-related transitions: Myanmar was a largely closed-off military dictatorship for nearly fifty years prior to its partial opening in 2011. In conjunction with structural factors, the triple transition had several important implications for Myanmar’s response to the pandemic. First, many of the aggressive approaches to countering Covid-19 that were effective in other contexts were infeasible for Myanmar, as the state lacked the capacity to enforce comprehensive population movement controls and large-scale testing and contact tracing. Second, Myanmar’s structural conditions prevented a uniform response to the pandemic. Third, Myanmar has several high-risk subgroups that complicated responses to the pandemic.


2020 ◽  
Vol 12 (20) ◽  
pp. 8369
Author(s):  
Mohammad Rahimi

In this Opinion, the importance of public awareness to design solutions to mitigate climate change issues is highlighted. A large-scale acknowledgment of the climate change consequences has great potential to build social momentum. Momentum, in turn, builds motivation and demand, which can be leveraged to develop a multi-scale strategy to tackle the issue. The pursuit of public awareness is a valuable addition to the scientific approach to addressing climate change issues. The Opinion is concluded by providing strategies on how to effectively raise public awareness on climate change-related topics through an integrated, well-connected network of mavens (e.g., scientists) and connectors (e.g., social media influencers).


2021 ◽  
Vol 13 (2) ◽  
pp. 826
Author(s):  
Meiling Zhou ◽  
Xiuli Feng ◽  
Kaikai Liu ◽  
Chi Zhang ◽  
Lijian Xie ◽  
...  

Influenced by climate change, extreme weather events occur frequently, and bring huge impacts to urban areas, including urban waterlogging. Conducting risk assessments of urban waterlogging is a critical step to diagnose problems, improve infrastructure and achieve sustainable development facing extreme weathers. This study takes Ningbo, a typical coastal city in the Yangtze River Delta, as an example to conduct a risk assessment of urban waterlogging with high-resolution remote sensing images and high-precision digital elevation models to further analyze the spatial distribution characteristics of waterlogging risk. Results indicate that waterlogging risk in the city proper of Ningbo is mainly low risk, accounting for 36.9%. The higher-risk and medium-risk areas have the same proportions, accounting for 18.7%. They are followed by the lower-risk and high-risk areas, accounting for 15.5% and 9.6%, respectively. In terms of space, waterlogging risk in the city proper of Ningbo is high in the south and low in the north. The high-risk area is mainly located to the west of Jiangdong district and the middle of Haishu district. The low-risk area is mainly distributed in the north of Jiangbei district. These results are consistent with the historical situation of waterlogging in Ningbo, which prove the effectiveness of the risk assessment model and provide an important reference for the government to prevent and mitigate waterlogging. The optimized risk assessment model is also of importance for waterlogging risk assessments in coastal cities. Based on this model, the waterlogging risk of coastal cities can be quickly assessed, combining with local characteristics, which will help improve the city’s capability of responding to waterlogging disasters and reduce socio-economic loss.


Author(s):  
Antti Kontturi ◽  
Satu Kekomäki ◽  
Eeva Ruotsalainen ◽  
Eeva Salo

AbstractTuberculosis (TB) risk is highest immediately after primary infection, and young children are vulnerable to rapid and severe TB disease. Contact tracing should identify infected children rapidly and simultaneously target resources effectively. We conducted a retrospective review of the paediatric TB contact tracing results in the Hospital District of Helsinki and Uusimaa from 2012 to 2016 and identified risk factors for TB disease or infection. Altogether, 121 index cases had 526 paediatric contacts of whom 34 were diagnosed with TB disease or infection. The maximum delay until first contact investigation visit among the household contacts under 5 years of age with either TB disease or infection was 7 days. The yield for TB disease or infection was 4.6% and 12.8% for household contacts, 0.5% and 0% for contacts exposed in a congregate setting and 1.4% and 5.0% for other contacts, respectively. Contacts born in a TB endemic country (aOR 3.07, 95% CI 1.10–8.57), with household exposure (aOR 2.96, 95% CI 1.33–6.58) or a sputum smear positive index case (aOR 3.96, 95% CI 1.20–13.03) were more likely to have TB disease or infection.Conclusions: Prompt TB investigations and early diagnosis can be achieved with a well-organised contact tracing structure. The risk for TB infection or disease was higher among contacts with household exposure, a sputum smear positive index case or born in a TB endemic country. Large-scale investigations among children exposed in congregate settings can result in a very low yield and should be cautiously targeted. What is Known:• Vulnerable young children are a high priority in contact tracing and should be evaluated as soon as possible after TB exposure What is New:• Prompt investigations for paediatric TB contacts and early diagnosis of infected children can be achieved with a well-organised contact tracing structure• Large-scale investigations among children exposed in congregate settings can result in a very low yield and should be cautiously targeted


Author(s):  
Olivier Nsekuye ◽  
Edson Rwagasore ◽  
Marie Aime Muhimpundu ◽  
Ziad El-Khatib ◽  
Daniel Ntabanganyimana ◽  
...  

We reported the findings of the first Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) four clusters identified in Rwanda. Case-investigations included contact elicitation, testing, and isolation/quarantine of confirmed cases. Socio-demographic and clinical data on cases and contacts were collected. A confirmed case was a person with laboratory confirmation of SARS-CoV-2 infection (PCR) while a contact was any person who had contact with a SARS-CoV-2 confirmed case within 72 h prior, to 14 days after symptom onset; or 14 days before collection of the laboratory-positive sample for asymptomatic cases. High risk contacts were those who had come into unprotected face-to-face contact or had been in a closed environment with a SARS-CoV-2 case for >15 min. Forty cases were reported from four clusters by 22 April 2020, accounting for 61% of locally transmitted cases within six weeks. Clusters A, B, C and D were associated with two nightclubs, one house party, and different families or households living in the same compound (multi-family dwelling). Thirty-six of the 1035 contacts tested were positive (secondary attack rate: 3.5%). Positivity rates were highest among the high-risk contacts compared to low-risk contacts (10% vs. 2.2%). Index cases in three of the clusters were imported through international travelling. Fifteen of the 40 cases (38%) were asymptomatic while 13/25 (52%) and 8/25 (32%) of symptomatic cases had a cough and fever respectively. Gatherings in closed spaces were the main early drivers of transmission. Systematic case-investigations contact tracing and testing likely contributed to the early containment of SARS-CoV-2 in Rwanda.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. Cencetti ◽  
G. Santin ◽  
A. Longa ◽  
E. Pigani ◽  
A. Barrat ◽  
...  

AbstractDigital contact tracing is a relevant tool to control infectious disease outbreaks, including the COVID-19 epidemic. Early work evaluating digital contact tracing omitted important features and heterogeneities of real-world contact patterns influencing contagion dynamics. We fill this gap with a modeling framework informed by empirical high-resolution contact data to analyze the impact of digital contact tracing in the COVID-19 pandemic. We investigate how well contact tracing apps, coupled with the quarantine of identified contacts, can mitigate the spread in real environments. We find that restrictive policies are more effective in containing the epidemic but come at the cost of unnecessary large-scale quarantines. Policy evaluation through their efficiency and cost results in optimized solutions which only consider contacts longer than 15–20 minutes and closer than 2–3 meters to be at risk. Our results show that isolation and tracing can help control re-emerging outbreaks when some conditions are met: (i) a reduction of the reproductive number through masks and physical distance; (ii) a low-delay isolation of infected individuals; (iii) a high compliance. Finally, we observe the inefficacy of a less privacy-preserving tracing involving second order contacts. Our results may inform digital contact tracing efforts currently being implemented across several countries worldwide.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 215
Author(s):  
Na Cheng ◽  
Shuli Song ◽  
Wei Li

The ionosphere is a significant component of the geospace environment. Storm-induced ionospheric anomalies severely affect the performance of Global Navigation Satellite System (GNSS) Positioning, Navigation, and Timing (PNT) and human space activities, e.g., the Earth observation, deep space exploration, and space weather monitoring and prediction. In this study, we present and discuss the multi-scale ionospheric anomalies monitoring over China using the GNSS observations from the Crustal Movement Observation Network of China (CMONOC) during the 2015 St. Patrick’s Day storm. Total Electron Content (TEC), Ionospheric Electron Density (IED), and the ionospheric disturbance index are used to monitor the storm-induced ionospheric anomalies. This study finally reveals the occurrence of the large-scale ionospheric storms and small-scale ionospheric scintillation during the storm. The results show that this magnetic storm was accompanied by a positive phase and a negative phase ionospheric storm. At the beginning of the main phase of the magnetic storm, both TEC and IED were significantly enhanced. There was long-duration depletion in the topside ionospheric TEC during the recovery phase of the storm. This study also reveals the response and variations in regional ionosphere scintillation. The Rate of the TEC Index (ROTI) was exploited to investigate the ionospheric scintillation and compared with the temporal dynamics of vertical TEC. The analysis of the ROTI proved these storm-induced TEC depletions, which suppressed the occurrence of the ionospheric scintillation. To improve the spatial resolution for ionospheric anomalies monitoring, the regional Three-Dimensional (3D) ionospheric model is reconstructed by the Computerized Ionospheric Tomography (CIT) technique. The spatial-temporal dynamics of ionospheric anomalies during the severe geomagnetic storm was reflected in detail. The IED varied with latitude and altitude dramatically; the maximum IED decreased, and the area where IEDs were maximum moved southward.


Sign in / Sign up

Export Citation Format

Share Document