The effects of secondary flow on the laminar dispersion of an injected substance in a curved tube

The numerical solution by McConalogue & Srivastava (1968) of Dean’s simplified Navier–Stokes equations for the laminar flow of an inviscid fluid through a tube of circular cross-section of radius a , coiled in a circular arc of radius L , and valid for k in the range (16.6, 77.1), where k = Re √( a / L ), Re the Reynolds number, is compared with experiment, correlated to the asymptotic solutions for k > 100, and extended to study the convective axial dis­persion of a substance injected into the tube. The variation of the calculated flux ratio agrees closely with White’s (1929) measurements of the inverse quantity over the same range, and the field patterns for the upper end of the range establish the validity of the two basic assumptions of the asymptotic solutions. The original method is extended to calculate the mean axial velocity of a typical particle of the fluid and to present the statis­tical distribution of mean velocity over the particles of a substance injected as a thin disk uniformly over the cross section of the tube. These distributions are used to display the varia­tion with k of the shape of indicator concentration-time curves. The expected effect of secondary flow, in producing a more uniform distribution of velocity over the fluid than in Poiseuille flow, is evident.

2017 ◽  
Vol 826 ◽  
pp. 396-420 ◽  
Author(s):  
M. Bouyges ◽  
F. Chedevergne ◽  
G. Casalis ◽  
J. Majdalani

This work introduces a similarity solution to the problem of a viscous, incompressible and rotational fluid in a right-cylindrical chamber with uniformly porous walls and a non-circular cross-section. The attendant idealization may be used to model the non-reactive internal flow field of a solid rocket motor with a star-shaped grain configuration. By mapping the radial domain to a circular pipe flow, the Navier–Stokes equations are converted to a fourth-order differential equation that is reminiscent of Berman’s classic expression. Then assuming a small radial deviation from a fixed chamber radius, asymptotic expansions of the three-component velocity and pressure fields are systematically pursued to the second order in the radial deviation amplitude. This enables us to derive a set of ordinary differential relations that can be readily solved for the mean flow variables. In the process of characterizing the ensuing flow motion, the axial, radial and tangential velocities are compared and shown to agree favourably with the simulation results of a finite-volume Navier–Stokes solver at different cross-flow Reynolds numbers, deviation amplitudes and circular wavenumbers.


2005 ◽  
Vol 128 (2) ◽  
pp. 258-265 ◽  
Author(s):  
Yitung Chen ◽  
Huajun Chen ◽  
Jinsuo Zhang ◽  
Hsuan-Tsung Hsieh

In the present study, the flow in a rotating helical pipe with an elliptical cross section is considered. The axes of the elliptical cross section are in arbitrary directions. Using the perturbation method, the Navier-Stokes equations in a rotating helical coordinate system are solved. The combined effects of rotation, torsion, and geometry on the characteristics of secondary flow and fluid particle trajectory are discussed. Some new and interesting conclusions are obtained, such as how the number of secondary flow cells and the secondary flow intensity depends on the ratio of the Coroilis force to the centrifugal force. The results show that the increase of torsion has the tendency to transfer the structure of secondary flow into a saddle flow, and that the incline angle α increases or decreases the secondary flow intensity depending on the resultant force between the Corilois force and centrifugal force.


2004 ◽  
Vol 71 (4) ◽  
pp. 459-464 ◽  
Author(s):  
S. Bhattacharyya ◽  
S. Mahapatra ◽  
F. T. Smith

The local planar flow of incompressible fluid past an obstacle of semi-circular cross section is considered, the obstacle being mounted on a long flat surface. The far-field motion is one of uniform shear. Direct numerical solutions of the Navier-Stokes equations are described over a range of Reynolds numbers. The downstream eddy length and upstream position of maximum pressure gradient are found to agree with increased Reynolds number theory; in particular the agreement for the former quantity is close for Reynolds numbers above about 50.


1986 ◽  
Vol 41 (9) ◽  
pp. 1141-1153
Author(s):  
U. Brosa

A simple procedure to find solutions of the hydrodynamic Stokes equations is given. The procedure is used to determine the linear modes of a newtonian fluid in a pipe of circular cross section. Compressibility, shear and bulk viscosity are included, and no restrictions on the symmetry of the modes are made. Furthermore an infinite set of exact solutions of the Navier-Stokes equations is presented.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Isam Janajreh ◽  
Ilham Talab ◽  
Jill Macpherson

Downwind wind turbines have lower upwind rotor misalignment, and thus lower turning moment and self-steered advantage over the upwind configuration. In this paper, numerical simulation to the downwind turbine is conducted to investigate the interaction between the tower and the blade during the intrinsic passage of the rotor in the wake of the tower. The moving rotor has been accounted for via ALE formulation of the incompressible, unsteady, turbulent Navier-Stokes equations. The localizedCP,CL, andCDare computed and compared to undisturbed flow evaluated by Panel method. The time history of theCP, aerodynamic forces (CLandCD), as well as moments were evaluated for three cross-sectional tower; asymmetrical airfoil (NACA0012) having four times the rotor's chord length, and two circular cross-sections having four and two chords lengths of the rotor's chord. 5%, 17%, and 57% reductions of the aerodynamic lift forces during the blade passage in the wake of the symmetrical airfoil tower, small circular cross-section tower and large circular cross-section tower were observed, respectively. The pronounced reduction, however, is confined to a short time/distance of three rotor chords. A net forward impulsive force is also observed on the tower due to the high speed rotor motion.


Author(s):  
Marcel Escudier

In this chapter it is shown that solutions to the Navier-Stokes equations can be derived for steady, fully developed flow of a constant-viscosity Newtonian fluid through a cylindrical duct. Such a flow is known as a Poiseuille flow. For a pipe of circular cross section, the term Hagen-Poiseuille flow is used. Solutions are also derived for shear-driven flow within the annular space between two concentric cylinders or in the space between two parallel plates when there is relative tangential movement between the wetted surfaces, termed Couette flows. The concepts of wetted perimeter and hydraulic diameter are introduced. It is shown how the viscometer equations result from the concentric-cylinder solutions. The pressure-driven flow of generalised Newtonian fluids is also discussed.


1998 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Robert R. Hwang ◽  
Sheng-Yuh Jaw

ABSTRACTThis paper presents a numerical study on turbulent vortex shedding flows past a square cylinder. The 2D unsteady periodic shedding motion was resolved in the calculation and the superimposed turbulent fluctuations were simulated with a second-order Reynolds-stress closure model. The calculations were carried out by solving numerically the fully elliptic ensemble-averaged Navier-Stokes equations coupled with the turbulence model equations together with the two-layer approach in the treatment of the near-wall region. The performance of the computations was evaluated by comparing the numerical results with data from available experiments. Results indicate that the present study gives good agreement in the shedding frequency and mean drag as well as in some phase profiles of the mean velocity.


1991 ◽  
Vol 113 (4) ◽  
pp. 334-343 ◽  
Author(s):  
R. W. Yeung ◽  
C.-F. Wu

The problem of a body oscillating in a viscous fluid with a free surface is examined. The Navier-Stokes equations and boundary conditions are linearized using the assumption of small body-motion to wavelength ratio. Generation and diffusion of vorticity, but not its convection, are accounted for. Rotational and irrotational Green functions for a divergent and a vorticity source are presented, with the effects of viscosity represented by a frequency Reynolds number Rσ = g2/νσ3. Numerical solutions for a pair of coupled integral equations are obtained for flows about a submerged cylinder, circular or square. Viscosity-modified added-mass and damping coefficients are developed as functions of frequency. It is found that as Rσ approaches infinity, inviscid-fluid results can be recovered. However, viscous effects are important in the low-frequency range, particularly when Rσ is smaller than O(104).


Author(s):  
Abhijit Mukherjee ◽  
Satish G. Kandlikar

The present study is performed to analyze the wall heat transfer mechanisms during growth of a vapor bubble inside a microchannel. The microchannel is of 200 μm square cross section and a vapor bubble begins to grow at one of the walls, with liquid coming in through the channel inlet. The complete Navier-Stokes equations along with continuity and energy equations are solved using the SIMPLER method. The liquid vapor interface is captured using the level set technique. The bubble grows rapidly due to heat transfer from the walls and soon turns into a plug filling the entire channel cross section. The average wall heat transfer at the channel walls is studied for different values of wall superheat and incoming liquid mass flux. The results show that the wall heat transfer increases with wall superheat but is almost unaffected by the liquid flow rate. The bubble growth is found to be the primary mechanism of increasing wall heat transfer as it pushes the liquid against the walls thereby influencing the thermal boundary layer development.


Sign in / Sign up

Export Citation Format

Share Document