scholarly journals Vertical ground motion and its effects on liquefaction resistance of fully saturated sand deposits

Author(s):  
Vasiliki Tsaparli ◽  
Stavroula Kontoe ◽  
David M. G. Taborda ◽  
David M. Potts

Soil liquefaction has been extensively investigated over the years with the aim to understand its fundamental mechanism and successfully remediate it. Despite the multi-directional nature of earthquakes, the vertical seismic component is largely neglected, as it is traditionally considered to be of much lower amplitude than the components in the horizontal plane. The 2010–2011 Canterbury earthquake sequence in New Zealand is a prime example that vertical accelerations can be of significant magnitude, with peak amplitudes well exceeding their horizontal counterparts. As research on this topic is very limited, there is an emerging need for a more thorough investigation of the vertical motion and its effect on soil liquefaction. As such, throughout this study, uni- and bidirectional finite-element analyses are carried out focusing on the influence of the input vertical motion on sand liquefaction. The effects of the frequency content of the input motion, of the depth of the deposit and of the hydraulic regime, using variable permeability, are investigated and exhaustively discussed. The results indicate that the usual assumption of linear elastic response when compressional waves propagate in a fully saturated sand deposit does not always hold true. Most importantly post-liquefaction settlements appear to be increased when the vertical component is included in the analysis.

2012 ◽  
Vol 226-228 ◽  
pp. 1019-1022 ◽  
Author(s):  
Pei Zhen Li ◽  
Dong Ya Ma ◽  
Da Ming Zeng ◽  
Xi Lin Lu

Liquefaction is one of the most important damages in pile foundation under earthquake. However, it is very difficult to analyze. Numerical simulation of pile-soil interaction considering saturated sand liquefaction under earthquake is conducted using OpenSees program. In this model, the soil is divided into soft clay soil and saturated sand, and the single pile is embedded in the soil. The results show that the pore water pressure rises and the soil liquefied as vibration time increases. With the nonlinear of the soil develop, the stiffness, bearing capacity and the acceleration response of the soil and the pile decrease, while the displacement response of the soil increases. Therefore, it is necessary to consider the soil liquefaction in the design and analysis in the engineering practice.


2014 ◽  
Vol 30 (3) ◽  
pp. 1335-1358 ◽  
Author(s):  
Sanaz Rezaeian ◽  
Yousef Bozorgnia ◽  
I. M. Idriss ◽  
Norman A. Abrahamson ◽  
Kenneth W. Campbell ◽  
...  

This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust elastic response spectral ordinates for the vertical component of earthquake ground motion at a 5% viscous damping ratio to ordinates at damping ratios between 0.5% and 30%. Using the extensive NGA-West2 database of recorded ground motions from worldwide shallow crustal earthquakes in active tectonic regions, a functional form for the median DSF is proposed that depends on the damping ratio, spectral period, earthquake magnitude, and distance. Standard deviation is a function of the damping ratio and spectral period. The proposed model is compared to the DSF for the “average” horizontal component. In general, the peak in DSF is shifted toward shorter periods and is farther from unity for the vertical component. Also, the standard deviation of DSF for vertical motion is slightly higher than that observed for the “average” horizontal component.


2021 ◽  
Vol 11 (11) ◽  
pp. 5283
Author(s):  
Jui-Ching Chou ◽  
Hsueh-Tusng Yang ◽  
Der-Guey Lin

Soil-liquefaction-related hazards can damage structures or lead to an extensive loss of life and property. Therefore, the stability and safety of structures against soil liquefaction are essential for evaluation in earthquake design. In practice, the simplified liquefaction analysis procedure associated with numerical simulation analysis is the most used approach for evaluating the behavior of structures or the effectiveness of mitigation plans. First, the occurrence of soil liquefaction is evaluated using the simplified procedure. If soil liquefaction occurs, the resulting structural damage or the following mitigation plan is evaluated using the numerical simulation analysis. Rational and comparable evaluation results between the simplified liquefaction analysis procedure and the numerical simulation analysis are achieved by ensuring that the liquefaction constitutive model used in the numerical simulation has a consistent liquefaction resistance with the simplified liquefaction analysis procedure. In this study, two frequently used liquefaction constitutive models (Finn model and UBCSAND model) were calibrated by fitting the liquefaction triggering curves of most used simplified liquefaction analysis procedures (NCEER, HBF, JRA96, and T-Y procedures) in Taiwan via FLAC program. In addition, the responses of two calibrated models were compared and discussed to provide guidelines for selecting an appropriate liquefaction constitutive model in future projects.


2013 ◽  
Vol 405-408 ◽  
pp. 470-473
Author(s):  
Sheng Jie Di ◽  
Ming Yuan Wang ◽  
Zhi Gang Shan ◽  
Hai Bo Jia

A procedure for evaluating liquefaction resistance of soils based on the shear wave velocity measurements is outlined in the paper. The procedure follows the general formal of the Seed-Idriss simplified procedure. In addition, it was developed following suggestions from industry, researchers, and practitioners. The procedure correctly predicts moderate to high liquefaction potential for over 95% of the liquefaction case histories. The case study for the site of offshore wind farm in Jiangsu province is provided to illustrate the application of the proposed procedure. The feature of the soils and the shear wave velocity in-situ tested in site are discussed and the liquefaction potential of the layer is evaluated. The application shows that the layers of the non-cohesive soils in the depths 3-11m may be liquefiable according to the procedure.


2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Mohammed Fattah ◽  
Mohammed Al-Neami ◽  
Nora Jajjawi

AbstractThe present research is concerned with predicting liquefaction potential and pore water pressure under the dynamic loading on fully saturated sandy soil using the finite element method by QUAKE/W computer program. As a case study, machine foundations on fully saturated sandy soil in different cases of soil densification (loose, medium and dense sand) are analyzed. Harmonic loading is used in a parametric study to investigate the effect of several parameters including: the amplitude frequency of the dynamic load. The equivalent linear elastic model is adopted to model the soil behaviour and eight node isoparametric elements are used to model the soil. Emphasis was made on zones at which liquefaction takes place, the pore water pressure and vertical displacements develop during liquefaction. The results showed that liquefaction and deformation develop fast with the increase of loading amplitude and frequency. Liquefaction zones increase with the increase of load frequency and amplitude. Tracing the propagation of liquefaction zones, one can notice that, liquefaction occurs first near the loading end and then develops faraway. The soil overburden pressure affects the soil liquefaction resistance at large depths. The liquefaction resistance and time for initial liquefaction increase with increasing depths. When the frequency changes from 5 to 10 rad/sec. (approximately from static to dynamic), the response in displacement and pore water pressure is very pronounced. This can be attributed to inertia effects. Further increase of frequency leads to smaller effect on displacement and pore water pressure. When the frequency is low; 5, 10 and 25 rad/sec., the oscillation of the displacement ends within the period of load application 60 sec., while when ω = 50 rad/sec., oscillation continues after this period.


2020 ◽  
Vol 10 (9) ◽  
pp. 3111 ◽  
Author(s):  
Visar Farhangi ◽  
Moses Karakouzian ◽  
Marten Geertsema

Liquefaction is a hazardous seismic-based phenomenon, which causes an abrupt decrease in soil strength properties and can result in the massive destruction of the built environment. This research presents a novel approach to reduce the risk of soil liquefaction using jet-grouted micropiles in clean sands. The saturated soil profile of the study project mainly contains clean sands, which are suitable to more reliably employ simplified soil liquefaction analyses. The grouting is conducted using 420 micropiles to increase the existing soil properties. The effect of jet grouting on reducing the potential of liquefaction is assessed using the results of the cone penetration test (CPT) and the standard penetration test (SPT), which were conducted before and after jet grouting by implementing micropiles in the project sites. According to three CPT-based liquefaction analyses, the Juang method predicts the most effective improvement range of the factor of safety in the clean sand. The Boulanger and Idriss, and Eurocode methods show comparable evaluations. Results of the SPT-based analyses show the most considerable increase of the factor of safety following the Boulanger and Idriss, and NCEER approaches in the SP soil. CPT- and SPT-based analyses confirm the effectiveness of jet grouting by micropiles on enhancing soil properties and reducing the risk of liquefaction.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 330
Author(s):  
Zhixiong Chen ◽  
Hongrui Li ◽  
Anthony Teck Chee Goh ◽  
Chongzhi Wu ◽  
Wengang Zhang

Soil liquefaction is one of the most complicated phenomena to assess in geotechnical earthquake engineering. The conventional procedures developed to determine the liquefaction potential of sandy soil deposits can be categorized into three main groups: Stress-based, strain-based, and energy-based procedures. The main advantage of the energy-based approach over the remaining two methods is the fact that it considers the effects of strain and stress concurrently unlike the stress or strain-based methods. Several liquefaction evaluation procedures and approaches have been developed relating the capacity energy to the initial soil parameters, such as the relative density, initial effective confining pressure, fine contents, and soil textural properties. In this study, based on the capacity energy database by Baziar et al. (2011), analyses have been carried out on a total of 405 previously published tests using soft computing approaches, including Ridge, Lasso & LassoCV, Random Forest, eXtreme Gradient Boost (XGBoost), and Multivariate Adaptive Regression Splines (MARS) approaches, to assess the capacity energy required to trigger liquefaction in sand and silty sands. The results clearly prove the capability of the proposed models and the capacity energy concept to assess liquefaction resistance of soils. It is also proposed that these approaches should be used as cross-validation against each other. The result shows that the capacity energy is most sensitive to the relative density.


2019 ◽  
Vol 9 (19) ◽  
pp. 4078 ◽  
Author(s):  
Yuxia Bai ◽  
Jin Liu ◽  
Zezhuo Song ◽  
Fan Bu ◽  
Changqing Qi ◽  
...  

This study focused on investigating the effects of polypropylene fiber on the liquefaction resistance of saturated sand. We performed a battery of tests with a state-of-the-art ring shear apparatus on fiber-reinforced saturated sand, considering the influences of fiber content and sand density. Two different shearing methods named shear-torque-controlled (STC) and cyclic-torque-controlled (CTC) were considered for carrying out the tests. An energy approach was chosen to evaluate the results, and the fiber reinforcement mechanisms were analyzed. Our test results showed that in STC tests, the shear strength and shearing time of saturated sand increased proportionally to an increase of fiber content and sand density. The cycles required for liquefaction in CTC tests also increase with an increase in sand density and fiber content. The presence of fibers clearly increases the shear energy required for liquefaction. The shear energy increases with an increase in sand density and fiber content. Greater total shear energy is required in specimens with a higher density or larger fiber content. Fiber reinforcement in sand has acted as a spatial network in interlocking soil grains, thereby resulting in the necessity of more energy for overcoming the resistance during the shearing process. After performing the shearing test, the unreinforced specimen with loose structure collapsed totally, and the one with a dense structure collapsed partially, while fiber reinforcement specimens still maintained structural stability.


2001 ◽  
Vol 38 (3) ◽  
pp. 580-591 ◽  
Author(s):  
Y P Vaid ◽  
J D Stedman ◽  
S Sivathayalan

Liquefaction resistance of a sand under cyclic loading is assessed and the effects of the levels of confining pressure and static shear on resistance to liquefaction are investigated. Site-specific values of the resistance under specified levels of confining and static shear stresses are measured in the laboratory. The measured values are compared with those which would be predicted by the application of empirical multiplying factors Kσ and Kα to the reference resistance at 100 kPa effective confining stress with no static shear. It is shown that Kσ and Kα are not independent, as assumed in current practice. The combined factor Kσ × Kα resulting from the empirical method is shown to underestimate the cyclic resistance ratio regardless of the initial density and confining and static shear levels. The degree of conservatism is most dramatic at looser density states.Key words: sand, liquefaction, static, cyclic, static shear, confining stress.


Sign in / Sign up

Export Citation Format

Share Document