scholarly journals Sex-biased demography modulates male harm across the genome

2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
Thomas J. Hitchcock ◽  
Andy Gardner

Recent years have seen an explosion of theoretical and empirical interest in the role that kin selection plays in shaping patterns of sexual conflict, with a particular focus on male harming traits. However, this work has focused solely on autosomal genes, and as such it remains unclear how demography modulates the evolution of male harm loci occurring in other portions of the genome, such as sex chromosomes and cytoplasmic elements. To investigate this, we extend existing models of sexual conflict for application to these different modes of inheritance. We first analyse the general case, revealing how sex-specific relatedness, reproductive value and the intensity of local competition combine to determine the potential for male harm. We then analyse a series of demographically explicit models, to assess how dispersal, overlapping generations, reproductive skew and the mechanism of population regulation affect sexual conflict across the genome, and drive conflict between nuclear and cytoplasmic genes. We then explore the effects of sex biases in these demographic parameters, showing how they may drive further conflicts between autosomes and sex chromosomes. Finally, we outline how different crossing schemes may be used to identify signatures of these intragenomic conflicts.

Evolution ◽  
2008 ◽  
Vol 62 (10) ◽  
pp. 2592-2599 ◽  
Author(s):  
Rufus A. Johnstone

2015 ◽  
Vol 28 (10) ◽  
pp. 1901-1910 ◽  
Author(s):  
Gonçalo S. Faria ◽  
Susana A. M. Varela ◽  
Andy Gardner

2018 ◽  
Author(s):  
Devon E. Pearse ◽  
Nicola J. Barson ◽  
Torfinn Nome ◽  
Guangtu Gao ◽  
Matthew A. Campbell ◽  
...  

AbstractTraits with different fitness optima in males and females cause sexual conflict when they have a shared genetic basis. Heteromorphic sex chromosomes can resolve this conflict and protect sexually antagonistic polymorphisms but accumulate deleterious mutations. However, many taxa lack differentiated sex chromosomes, and how sexual conflict is resolved in these species is largely unknown. Here we present a chromosome-anchored genome assembly for rainbow trout (Oncorhynchus mykiss) and characterize a 56 Mb double-inversion supergene that mediates sex-specific migration through sex-dependent dominance, a mechanism that reduces sexual conflict. The double-inversion contains key photosensory, circadian rhythm, adiposity, and sexual differentiation genes and displays frequency clines associated with latitude and temperature, revealing environmental dependence. Our results constitute the first example of sex-dependent dominance across a large autosomal supergene, a novel mechanism for sexual conflict resolution capable of protecting polygenic sexually antagonistic variation while avoiding the homozygous lethality and deleterious mutation load of heteromorphic sex chromosomes.


2015 ◽  
Vol 282 (1813) ◽  
pp. 20151417 ◽  
Author(s):  
Adam K. Chippindale ◽  
Meredith Berggren ◽  
Joshua H. M. Alpern ◽  
Robert Montgomerie

Two recent studies provide provocative experimental findings about the potential influence of kin recognition and cooperation on the level of sexual conflict in Drosophila melanogaster . In both studies, male fruit flies apparently curbed their mate-harming behaviours in the presence of a few familiar or related males, suggesting some form of cooperation mediated by kin selection. In one study, the reduction in agonistic behaviour by brothers apparently rendered them vulnerable to dramatic loss of paternity share when competing with an unrelated male. If these results are robust and generalizable, fruit flies could be a major new focus for the experimental study of kin selection and social evolution. In our opinion, however, the restrictive conditions required for male cooperation to be adaptive in this species make it unlikely to evolve. We investigated these phenomena in two different populations of D. melanogaster using protocols very similar to those in the two previous studies. Our experiments show no evidence for a reduction in mate harm based upon either relatedness or familiarity between males, and no reduction in male reproductive success when two brothers are in the presence of an unfamiliar, unrelated, ‘foreign’ male. Thus, the reduction of sexual conflict owing to male cooperation does not appear to be a general feature of the species, at least under domestication, and these contrasting results call for further investigation: in new populations, in the field and in the laboratory populations in which these phenomena have been reported.


Genetics ◽  
1979 ◽  
Vol 92 (1) ◽  
pp. 339-351
Author(s):  
Ted H Emigh

ABSTRACT The dynamics of a gene in a haploid population can be explained approximately by considering the average reproductive value of the gene. The dynamics of the average reproductive value are similar to those of a gene in a population with nonoverlapping generations with the following modifications: The effective population size, Ne, replaces N; the average mutation rates,μ* and v* replace μ and v; the average overall selection r*+(T-l)s** replaces s; and time is measured in terms of generations, T. The implications of the average selection coefficient to adaptive life histones are discussed.


2019 ◽  
Vol 37 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Masaru Hasegawa ◽  
Nobuyuki Kutsukake

2019 ◽  
Vol 3 (12) ◽  
pp. 1731-1742 ◽  
Author(s):  
Devon E. Pearse ◽  
Nicola J. Barson ◽  
Torfinn Nome ◽  
Guangtu Gao ◽  
Matthew A. Campbell ◽  
...  

AbstractMales and females often differ in their fitness optima for shared traits that have a shared genetic basis, leading to sexual conflict. Morphologically differentiated sex chromosomes can resolve this conflict and protect sexually antagonistic variation, but they accumulate deleterious mutations. However, how sexual conflict is resolved in species that lack differentiated sex chromosomes is largely unknown. Here we present a chromosome-anchored genome assembly for rainbow trout (Oncorhynchus mykiss) and characterize a 55-Mb double-inversion supergene that mediates sex-specific migratory tendency through sex-dependent dominance reversal, an alternative mechanism for resolving sexual conflict. The double inversion contains key photosensory, circadian rhythm, adiposity and sex-related genes and displays a latitudinal frequency cline, indicating environmentally dependent selection. Our results show sex-dependent dominance reversal across a large autosomal supergene, a mechanism for sexual conflict resolution capable of protecting sexually antagonistic variation while avoiding the homozygous lethality and deleterious mutations associated with typical heteromorphic sex chromosomes.


Sign in / Sign up

Export Citation Format

Share Document