scholarly journals Concentrating solar thermal power

Author(s):  
Hans Müller-Steinhagen

In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000 ° C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10–15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

Author(s):  
Hans Mu¨ller-Steinhagen

On October 30th 2009, a major industrial consortium initiated the so-called DESERTEC project which aims at providing by 2050 15% of the European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. In the heart of this concept are solar thermal power plants which can provide affordable, reliable and dispatchable electricity. While this technology has been known for about 100 years, new developments and market introduction programs have recently triggered world-wide activities leading to the present project pipeline of 8.5 GW and 42 billion Euro. To become competitive with mid-load electricity from conventional power plants within the next 10–15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations which are presently in the development or even demonstration stage. The scale of construction, the high temperatures and the naturally transient operation provide formidable challenges for academic and industrial R&D. Experimental and theoretical research involving all mechanisms of heat transfer and fluid flow is required together with large-scale demonstration to resolve the combined challenges of performance and cost.


Solar Energy ◽  
2011 ◽  
Vol 85 (4) ◽  
pp. 653-659 ◽  
Author(s):  
Michael Wittmann ◽  
Markus Eck ◽  
Robert Pitz-Paal ◽  
Hans Müller-Steinhagen

Sign in / Sign up

Export Citation Format

Share Document