scholarly journals The Ebola outbreak, 2013–2016: old lessons for new epidemics

2017 ◽  
Vol 372 (1721) ◽  
pp. 20160297 ◽  
Author(s):  
Cordelia E. M. Coltart ◽  
Benjamin Lindsey ◽  
Isaac Ghinai ◽  
Anne M. Johnson ◽  
David L. Heymann

Ebola virus causes a severe haemorrhagic fever in humans with high case fatality and significant epidemic potential. The 2013–2016 outbreak in West Africa was unprecedented in scale, being larger than all previous outbreaks combined, with 28 646 reported cases and 11 323 reported deaths. It was also unique in its geographical distribution and multicountry spread. It is vital that the lessons learned from the world's largest Ebola outbreak are not lost. This article aims to provide a detailed description of the evolution of the outbreak. We contextualize this outbreak in relation to previous Ebola outbreaks and outline the theories regarding its origins and emergence. The outbreak is described by country, in chronological order, including epidemiological parameters and implementation of outbreak containment strategies. We then summarize the factors that led to rapid and extensive propagation, as well as highlight the key successes, failures and lessons learned from this outbreak and the response. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’.

2015 ◽  
Vol 15 (1) ◽  
pp. 54-57 ◽  
Author(s):  
Obinna O Oleribe ◽  
Babatunde L Salako ◽  
M Mourtalla Ka ◽  
Albert Akpalu ◽  
Mairi McConnochie ◽  
...  

2017 ◽  
Vol 13 ◽  
pp. 67-70 ◽  
Author(s):  
Mahmoud Elmahdawy ◽  
Gihan H. Elsisi ◽  
Joao Carapinha ◽  
Mohamed Lamorde ◽  
Abdulrazaq Habib ◽  
...  

2019 ◽  
Vol 6 (4) ◽  
pp. 213-222 ◽  
Author(s):  
David A. Schwartz

Abstract Purpose of Review Ebola virus infection has one of the highest overall case fatality rates of any viral disease. It has historically had an especially high case mortality rate among pregnant women and infants—greater than 90% for pregnant women in some outbreaks and close to 100 % in fetuses and newborns. The Merck recombinant vaccine against Ebola virus, termed rVSV-ZEBOV, underwent clinical trials during the 2013–2015 West Africa Ebola epidemic where it was found to be 100% efficacious. It was subsequently used during the 2018 DRC Équateur outbreak and in the 2018 DRC Kivu Ebola which is still ongoing, where its efficacy is 97.5 %. Pregnant and lactating women and their infants have previously been excluded from the design, clinical trials, and administration of many vaccines and drugs. This article critically examines the development of the rVSV-ZEBOV vaccine and its accessibility to pregnant and lactating women and infants as a life-saving form of prevention through three recent African Ebola epidemics—West Africa, DRC Équateur, and DRC Kivu. Recent Findings Pregnant and lactating women and their infants were excluded from participation in the clinical trials of rVSV-ZEBOV conducted during the West Africa epidemic. This policy of exclusion was continued with the occurrence of the DRC Équateur outbreak in 2018, in spite of calls from the public health and global maternal health communities to vaccinate this population. Following the onset of the DRC Kivu epidemic, the exclusion persisted. Eventually, the policy was reversed to include vaccination of pregnant and lactating women. However, it was not implemented until June 2019, 10 months after the start of the epidemic, placing hundreds of women and infants at risk for this highly fatal infection. Summary The historical policy of excluding pregnant and lactating women and infants from vaccine design, clinical trials, and implementation places them at risk, especially in situations of infectious disease outbreaks. In the future, all pregnant women, regardless of trimester, breastfeeding mothers, and infants, should have access to the Ebola vaccine.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Martin C. Akogbéto ◽  
Fortuné Dagnon ◽  
Rock Aïkpon ◽  
Razaki Ossé ◽  
Albert S. Salako ◽  
...  

Author(s):  
Clement Adebajo Meseko ◽  
Adeniyi Olugbenga Egbetade ◽  
Shamsudeen Fagbo

2020 ◽  
Author(s):  
Angela R. Harrison ◽  
Megan Dearnley ◽  
Shawn Todd ◽  
Diane Green ◽  
Glenn A. Marsh ◽  
...  

AbstractMany viruses target signal transducers and activators of transcription (STAT) 1 and 2 to antagonise antiviral interferon (IFN) signalling, but targeting of signalling by other STATs/cytokines, including STAT3/interleukin (IL-) 6 that regulate processes important to Ebola virus (EBOV) haemorrhagic fever, is poorly defined. We report that EBOV potently inhibits STAT3 responses to IL-6 family cytokines, and that this is mediated by the IFN-antagonist VP24. Mechanistic analysis indicates that VP24 effects a unique strategy combining distinct karyopherin-dependent and karyopherin-independent mechanisms to antagonise STAT3-STAT1 heterodimers and STAT3 homodimers, respectively. This appears to reflect distinct mechanisms of nuclear trafficking of the STAT3 complexes, revealed for the first time by our analysis of VP24 function. These findings are consistent with major roles for global inhibition of STAT3 signalling in EBOV infection, and provide new insights into the molecular mechanisms of STAT3 nuclear trafficking, significant to pathogen-host interactions, cell physiology and pathologies such as cancer.Author summaryEbola virus (EBOV) continues to pose a significant risk to human health globally, causing ongoing disease outbreaks with case-fatality rates between 40 and 60%. Suppression of immune responses is a critical component of EBOV haemorrhagic fever, but understanding of EBOV impact on signalling by cytokines other than interferon is limited. We find that infectious EBOV inhibits interleukin-6 cytokine signalling via antagonism of STAT3. The antagonistic strategy uniquely combines two distinct mechanisms, which appear to reflect differing nuclear trafficking mechanisms of critical STAT3 complexes. This provides fundamental insights into the mechanisms of pathogenesis of a lethal virus, and biology of STAT3, a critical player in immunity, development, growth and cancer.


2016 ◽  
Vol 91 (2) ◽  
Author(s):  
Erik Dietzel ◽  
Gordian Schudt ◽  
Verena Krähling ◽  
Mikhail Matrosovich ◽  
Stephan Becker

ABSTRACT The Ebola virus (EBOV) outbreak in West Africa started in December 2013, claimed more than 11,000 lives, threatened to destabilize a whole region, and showed how easily health crises can turn into humanitarian disasters. EBOV genomic sequences of the West African outbreak revealed nonsynonymous mutations, which induced considerable public attention, but their role in virus spread and disease remains obscure. In this study, we investigated the functional significance of three nonsynonymous mutations that emerged early during the West African EBOV outbreak. Almost 90% of more than 1,000 EBOV genomes sequenced during the outbreak carried the signature of three mutations: a D759G substitution in the active center of the L polymerase, an A82V substitution in the receptor binding domain of surface glycoprotein GP, and an R111C substitution in the self-assembly domain of RNA-encapsidating nucleoprotein NP. Using a newly developed virus-like particle system and reverse genetics, we found that the mutations have an impact on the functions of the respective viral proteins and on the growth of recombinant EBOVs. The mutation in L increased viral transcription and replication, whereas the mutation in NP decreased viral transcription and replication. The mutation in the receptor binding domain of the glycoprotein GP improved the efficiency of GP-mediated viral entry into target cells. Recombinant EBOVs with combinations of the three mutations showed a growth advantage over the prototype isolate Makona C7 lacking the mutations. This study showed that virus variants with improved fitness emerged early during the West African EBOV outbreak. IMPORTANCE The dimension of the Ebola virus outbreak in West Africa was unprecedented. Amino acid substitutions in the viral L polymerase, surface glycoprotein GP, and nucleocapsid protein NP emerged, were fixed early in the outbreak, and were found in almost 90% of the sequences. Here we showed that these mutations affected the functional activity of viral proteins and improved viral growth in cell culture. Our results demonstrate emergence of adaptive changes in the Ebola virus genome during virus circulation in humans and prompt further studies on the potential role of these changes in virus transmissibility and pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document