Membrane lipid and osmolyte readjustment in the alkaliphilic micromycete Sodiomyces tronii under cold, heat and osmotic shocks

Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Elena A. Ianutsevich ◽  
Olga A. Danilova ◽  
Sofiya A. Bondarenko ◽  
Vera M. Tereshina

Previously, we showed for the first time that alkaliphilic fungi, in contrast to alkalitolerant fungi, accumulated trehalose under extremely alkaline conditions, and we have proposed its key role in alkaliphilia. We propose that high levels of trehalose in the mycelium of alkaliphiles may promote adaptation not only to alkaline conditions, but also to other stressors. Therefore, we studied changes in the composition of osmolytes, and storage and membrane lipids under the action of cold (CS), heat (HS) and osmotic (OS) shocks in the obligate alkaliphilic micromycete Sodiomyces tronii. During adaptation to CS, an increase in the degree of unsaturation of phospholipids was observed while the composition of osmolytes, membrane and storage lipids remained the same. Under HS conditions, a twofold increase in the level of trehalose and an increase in the proportion of phosphatidylethanolamines were observed against the background of a decrease in the proportion of phosphatidic acids. OS was accompanied by a decrease in the amount of membrane lipids, while their ratio remained unchanged, and an increase in the level of polyols (arabitol and mannitol) in the fungal mycelium, which suggests their role for adaptation to OS. Thus, the observed consistency of the composition of membrane lipids suggests that trehalose can participate in adaptation not only to extremely alkaline conditions, but also to other stressors – HS, CS and OS. Taken together, the data obtained indicate the adaptability of the fungus to the action of various stressors, which can point to polyextremotolerance.

1975 ◽  
Vol 146 (2) ◽  
pp. 409-416 ◽  
Author(s):  
K Watson ◽  
R L Houghton ◽  
E Bertoli ◽  
D E Griffiths

The lipid composition of yeast cells was manipulated by the use of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae. There was a 2-3-fold decrease in the concentration of cytochromes a+a3 when the unsaturated fatty acid content of the cells was decreased from 60-70% of the total fatty acid to 20-30%. The amounts of cytochromes b and c were also decreased under these conditions, but to a lesser extent. Further lipid depletion, to proportions of less than 20% unsaturated fatty acid, led to a dramatic decrease in the content of all cytochromes, particularly cytochromes a+a3. The ATPase (adenosine triphosphatase), succinate oxidase and NADH oxidase activities of the isolated mitochondria also varied with the degree of unsaturation of the membrane lipids. The lower the percentage of unsaturated fatty acid, the lower was the enzymic activity. Inhibition of mitochondrial ATPase by oligomycin, on the other hand, was not markedly influenced by the membrane-lipid unsaturation. Npn-linear Arrenius plots of mitochondrial membrane-bound enzymes showed transition temperatures that were dependent on the degree of membrane-lipid unsaturation. The greater the degree of lipid unsaturation, the lower was the transition temperature. It was concluded that the degree of unsaturation of the membrane lipids plays an important role in determining the properties of mitochondrial membrane-bound enzymes.


2021 ◽  
Vol 11 (9) ◽  
pp. 4069
Author(s):  
Elena P. Isakova ◽  
Natalya N. Gessler ◽  
Daria I. Dergacheva ◽  
Vera M. Tereshina ◽  
Yulia I. Deryabina ◽  
...  

In this study, we used Endomyces magnusii yeast with a complete respiratory chain and well-developed mitochondria system. This system is similar to the animal one which makes the yeast species an excellent model for studying ageing mechanisms. Mitochondria membranes play a vital role in the metabolic processes in a yeast cell. Mitochondria participate in the metabolism of several pivotal compounds including fatty acids (FAs) metabolism. The mitochondria respiratory activity, the membrane and storage lipids composition, and morphological changes in the culture during the long-lasting cultivation (for 168 h) were under investigation. High metabolic activity of E. magnusii might be related to the active function of mitochondria increasing in the 96- and 168-h growth phases. Cardiolipin (CL), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and sterols (St) were dominant in the membrane lipids. The St and sphingolipids (SL) shares increased by a lot, whereas the CL and phosphatidylinositol (PI) + PE ones decreased in the membrane lipids. This was the main change in the membrane lipid composition during the cultivation. In contrast, the amount of PE and phosphatidylserine (PS) did not change. Index of Hydrogen Deficiency (IHD) of phospholipids (PL) FAs significantly declined due to a decrease in the linoleic acid share and an increase in the amount of palmitic and oleic acid. There were some storage lipids in the mitochondria where free fatty acids (FFAs) (73–99% of the total) dominated, reaching the highest level in the 96-h phase. Thus, we can conclude that upon long-lasting cultivation, for the yeast assimilating an “oxidative” substrate, the following factors are of great importance in keeping longevity: (1) a decrease in the IHD reduces double bonds and the peroxidation indices of various lipid classes; (2) the amount of long-chain FFAs declines. Moreover, the factor list providing a long lifespan should include some other physiological features in the yeast cell. The alternative oxidase activity induced in the early stationary growth phase and high mitochondria activity maintains intensive oxygen consumption. It determines the ATP production and physiological doses of reactive oxygen species (ROS), which could be regarded as a trend favoring the increased longevity.


2021 ◽  
Vol 22 (4) ◽  
pp. 2174
Author(s):  
Liang Lin ◽  
Junchao Ma ◽  
Qin Ai ◽  
Hugh W. Pritchard ◽  
Weiqi Li ◽  
...  

Plant species conservation through cryopreservation using plant vitrification solutions (PVS) is based in empiricism and the mechanisms that confer cell integrity are not well understood. Using ESI-MS/MS analysis and quantification, we generated 12 comparative lipidomics datasets for membranes of embryogenic cells (ECs) of Magnolia officinalis during cryogenic treatments. Each step of the complex PVS-based cryoprotocol had a profoundly different impact on membrane lipid composition. Loading treatment (osmoprotection) remodeled the cell membrane by lipid turnover, between increased phosphatidic acid (PA) and phosphatidylglycerol (PG) and decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The PA increase likely serves as an intermediate for adjustments in lipid metabolism to desiccation stress. Following PVS treatment, lipid levels increased, including PC and PE, and this effectively counteracted the potential for massive loss of lipid species when cryopreservation was implemented in the absence of cryoprotection. The present detailed cryobiotechnology findings suggest that the remodeling of membrane lipids and attenuation of lipid degradation are critical for the successful use of PVS. As lipid metabolism and composition varies with species, these new insights provide a framework for technology development for the preservation of other species at increasing risk of extinction.


2021 ◽  
Vol 7 (7) ◽  
pp. 514
Author(s):  
Mariangela Dionysopoulou ◽  
George Diallinas

Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on the subcellular localization, stability and transport kinetics of two well-studied purine transporters, UapA and AzgA, in Aspergillus nidulans. We show that genetic reduction in biosynthesis of ergosterol, sphingolipids or phosphoinositides arrest A. nidulans growth after germling formation, but solely blocks in early steps of ergosterol (Erg11) or sphingolipid (BasA) synthesis have a negative effect on plasma membrane (PM) localization and stability of transporters before growth arrest. Surprisingly, the fraction of UapA or AzgA that reaches the PM in lipid biosynthesis mutants is shown to conserve normal apparent transport kinetics. We further show that turnover of UapA, which is the transporter mostly sensitive to membrane lipid content modification, occurs during its trafficking and by enhanced endocytosis, and is partly dependent on autophagy and Hect-type HulARsp5 ubiquitination. Our results point out that the role of specific membrane lipids on transporter biogenesis and function in vivo is complex, combinatorial and transporter-dependent.


2021 ◽  
Author(s):  
PEDRO FRANCISCO ALMAIDA PAGÁN ◽  
Alejandro Lucas-Sanchez ◽  
Antonio Martinez-Nicolas ◽  
Eva Terzibasi ◽  
Maria Angeles Rol de Lama ◽  
...  

Abstract The longevity-homeoviscous adaptation (LHA) theory of aging states that lipid composition of cell membranes is linked to metabolic rate and lifespan, which has been widely shown in mammals and birds but not sufficiently in fish. In this study, two species of the genus Amphiprion (A. percula and A. clarkii, with estimated maximum lifespan potentials [MLSP] of 30 and 9-16 years, respectively) and the damselfish Chromis viridis (estimated MLSP of 1-2 years) were chosen to test the LHA theory of aging in a potential model of exceptional longevity. Brain, livers and samples of skeletal muscle were collected for lipid analyses and integral part in the computation of membrane peroxidation indexes (PIn) from phospholipid (PL) fractions and PL fatty acid composition. When only the two anemonefish were compared, results pointed to the existence of a negative correlation between membrane PIn value and maximum life expectancy, well in line with the predictions from the LHA theory of aging. Nevertheless, contradictory data were obtained when the two clownfish were compared to the shorter-lived C. viridis. This results along with those obtained in previous studies on fish denote that the magnitude (and sometimes the direction) of the differences observed in membrane lipid composition and peroxidation index with MLSP cannot explain alone the diversity in longevity found among fishes.


2011 ◽  
Vol 214 ◽  
pp. 240-244
Author(s):  
Yi Nong Yan ◽  
Xiang Ru Zhang ◽  
Dan Li ◽  
Jian Jian Xu

Pretreatment solution which was obtained by many experiments who had a good printing effect was used to do the digital printing experiment on the cashmere fabric. Printing performance of the cashmere fabric in different pH value was compared to improve the printing quality of the cashmere fabric. Digital printing experiments in the alkaline environment were carried out for the first time and the best pH value was found out which could ensure dye uptake, color fastness, anti-seepage property and minimal damage to cashmere fabric. The paper provided basic reference to the actual production.


2016 ◽  
Vol 8 (9) ◽  
pp. 71 ◽  
Author(s):  
Yuanyuan Guo ◽  
Shanshan Liu ◽  
Zhen Yang ◽  
Shanshan Tian ◽  
Na Sui

<p>Low temperature is a major factor limiting the productivity and geographical distribution of many plant species. In this study, we investigated the effect of chilling stress (10 <sup>o</sup>C) on seedling growth in two sweet sorghum (<em>Sorghum bicolor </em>(L.) Moench) inbred lines (M-81E and Roma). Results showed that the chilling resistance of M-81E was higher than that of Roma. The Fv/Fm in leaves of M-81E decreased less than that of Roma during chilling stress. After 24 h of chilling stress, the Fv/Fm of M-81E and Roma decreased by 24.3 and 45.8%, respectively. Fo was also affected significantly during chilling stress. Malondialdehyde (MDA), an indicator of lipid peroxidation caused by ROS, increased during chilling stress. The contents of MDA increased less in leaves of M-81E than that in Roma under chilling stress. The antioxidant enzymes (SOD and APX) activity of M-81E was higher than those of Roma during chilling stress. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of MGDG, DGDG, SQDG, PC, PE and PG of M-81E significantly increased after 24 h of chilling treatment (10 <sup>o</sup>C). The DBI of MGDG, DGDG, SQDG, PC and PG of Roma significantly decreased. These results showed that the chilling tolerance of M-81E was higher than that of Roma by increasing of unsaturated fatty acid in membrane lipid and powerful protective enzyme system at seedling stage.</p>


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 371 ◽  
Author(s):  
Ying Gao ◽  
Yuexin Han ◽  
Wenbo Li

The flotation behaviors of diatomite and albite using dodecylamine (DDA) as a collector were investigated and compared. The pure mineral flotation results indicate that the flotability difference between albite and diatomite is above 87% at pH 5.5 to 10.5. The recovery of albite improves with increasing DDA dosage at pH 5.5 to 10.5. In the same pH range, diatomite has weaker flotability than albite, particularly in alkaline pH pulp. Zeta potential measurements indicate that diatomite has a higher negative surface charge than albite at pH 7 to 12, DDA interacts strongly with albite and weakly with diatomite. Thus, DDA preferentially absorbs on albite surface rather than diatomite under alkaline conditions. Fourier transform infrared spectra (FTIR) indicate that the amount of DDA adsorbed to albite is greater than that adsorbed to diatomite, under the same conditions. The adsorption of DDA on the surface of diatomite is investigated by using atomic force microscopy (AFM) for the first time. The adsorption of the collector DDA on the surface of albite per unit area is greater than that on diatomite. This accounts for the lower recovery of diatomite than that of albite.


Blood ◽  
1976 ◽  
Vol 47 (2) ◽  
pp. 189-195 ◽  
Author(s):  
TA Lane ◽  
SK Ballas ◽  
ER Burka

Abstract Human reticulocytes are capable of synthesizing membrane lipids from 14C-glycerol de novo. In both sickle and nonsickle reticulocytes the majority of 14C-glycerol was incorporated into phospholipids, primarily phosphatidylserine and phosphatidylcholine. Incorporation into sphingomyelin was minimal. The most abundant neutral lipid synthesized was triglyceride. In the absence of sickling, the rate of lipid synthesis in sickle reticulocytes was similar to that of nonsickle reticulocytes. With the induction of sickling under anoxic conditions sickle reticulocytes showed a prompt increase in the rate of lipid synthesis to an average of 69% above control values, while nonsickle reticulocytes under similar conditions decreased the rate of lipid synthesis. An increase in the rate of membrane lipid synthesis is associated in the mammalian erythroid cell with cell membrane damage. The findings further confirm that lesions of the erythroid cell membrane in sickle cell anemia are secondary to the sickling process itself.


2020 ◽  
Vol 47 (1) ◽  
pp. 58 ◽  
Author(s):  
Le Xu ◽  
Rui Pan ◽  
Meixue Zhou ◽  
Yanhao Xu ◽  
Wenying Zhang

Membrane lipid remodelling is one of the strategies that plants have developed to combat abiotic stress. In this study, physiological, lipidomic and proteome analyses were conducted to investigate the changes in glycerolipid and phospholipid concentrations in the wheat (Triticum aestivum L.) cultivars CIGM90.863 and Seri M82 under hypoxia treatment. The growth of CIGM90.863 remained unaffected, whereas Seri M82 was significantly stunted after 8 days of hypoxia treatment. The concentrations of all lipids except lysophosphatidylglycerol were significantly higher in the leaves of Seri M82 than in CIGM90.863 under normal growth conditions. The lipid profile changed significantly under hypoxia stress and varied between genotypes for some of the lipids. Phosphatidic acids remained unchanged in Seri M82 but they were gradually induced in CIGM90.863 in response to hypoxia stress because of the higher phospholipase D expression and lower expression of diglycerol kinase and phosphatidate phosphatases. In contrast, digalactosyldiacylglycerol content was highly stable in CIGM90.863 following hypoxia treatment, although it decreased significantly in Seri M82. Phosphatidylglycerol and lipoxygenase showed a stronger and faster response in CIGM90.863 than in Seri M82 under hypoxia stress. Different membrane lipid adjustments in wheat under oxygen deficiency conditions could be partly responsible for the differing tolerance of Seri M82 and CIGM90.863. This study will help us to better understand how wheat tolerates hypoxia stress by regulating lipid remodelling.


Sign in / Sign up

Export Citation Format

Share Document