scholarly journals Moving patronin foci and growing microtubule plus ends direct the spatiotemporal dynamics of Rho signaling and myosin during apical constriction

2021 ◽  
Author(s):  
Anwesha Guru ◽  
Surat Saravanan ◽  
Deepanshu Sharma ◽  
Maithreyi Narasimha

The contraction of the amnioserosa by apical constriction provides the major force for Drosophila dorsal closure. The nucleation, movement and dispersal of apicomedial actomyosin complexes generate pulsed constrictions during early dorsal closure whereas persistent apicomedial and circumapical actomyosin complexes drive the unpulsed constrictions that follow. What governs the spatiotemporal assembly of these distinct complexes, endows them with their pulsatile dynamics, and directs their motility remains unresolved. Here we identify an essential role for microtubule growth in regulating the timely contraction of the amnioserosa. We show that a symmetric cage of apical microtubules forms around the coalescing apicomedial myosin complex. An asymmetric tail of microtubules then trails the moving myosin complex and disperses as the myosin complex dissolves. Perturbing microtubule growth reduced the coalescence and movement of apicomedial myosin complexes and redistributed myosin and its activator, Rho kinase to the circumapical pool and altered the cell constriction and tissue contraction dynamics of the amnioserosa. We show that RhoGEF2, the activator of the Rho1 GTPase, is transiently associated with microtubule plus end binding protein EB1 and the apicomedial actomyosin complex. Our results suggest that microtubule growth from moving patronin platforms modulates actomyosin contractility through the spatiotemporal regulation of Rho1 activity. We propose that microtubule reorganisation enables a self-organising, mechanosensitive feedback loop that buffers the tissue against mechanical stresses by modulating actomyosin contractility.

2018 ◽  
Author(s):  
C.H. Durney ◽  
T.J.C. Harris ◽  
J.J. Feng

AbstractWe present a vertex-based model forDrosophiladorsal closure that predicts the mechanics of cell oscillation and contraction from the dynamics of the PAR proteins. Based on experimental observations of how aPKC, Par-6 and Bazooka migrate from the circumference of the apical surface to the medial domain, and how they interact with each other and ultimately regulate the apicomedial actomyosin, we formulate a system of differential equations that capture the key features of the process. The oscillation in cell area in the early phase of dorsal closure results from an intracellular negative feedback loop that involves myosin, an actomyosin regulator, aPKC and Bazooka. In the slow phase, gradual sequestration of apicomedial aPKC into Bazooka clusters causes incomplete disassembly of the myosin network over each cycle of oscillation, thus producing the so-called ratchet. The fast phase of rapid cell and tissue contraction arises when medial myosin, no longer hindered by aPKC, builds up in time and produces sustained contraction. Thus, a minimal set of rules governing the dynamics of the PAR proteins, extracted from experimental observations, can account for all major mechanical outcomes of dorsal closure, including the transitions between its three distinct phases.Insert Received for publication Date and in final form Date


2003 ◽  
Vol 546 (3) ◽  
pp. 823-836 ◽  
Author(s):  
Katsuaki Ito ◽  
Erika Shimomura ◽  
Takahiro Iwanaga ◽  
Mitsuya Shiraishi ◽  
Kazutoshi Shindo ◽  
...  

2013 ◽  
Vol 201 (5) ◽  
pp. 709-724 ◽  
Author(s):  
Jorge G. Ferreira ◽  
António J. Pereira ◽  
Anna Akhmanova ◽  
Helder Maiato

During mitosis, human cells round up, decreasing their adhesion to extracellular substrates. This must be quickly reestablished by poorly understood cytoskeleton remodeling mechanisms that prevent detachment from epithelia, while ensuring the successful completion of cytokinesis. Here we show that the microtubule end-binding (EB) proteins EB1 and EB3 play temporally distinct roles throughout cell division. Whereas EB1 was involved in spindle orientation before anaphase, EB3 was required for stabilization of focal adhesions and coordinated daughter cell spreading during mitotic exit. Additionally, EB3 promoted midbody microtubule stability and, consequently, midbody stabilization necessary for efficient cytokinesis. Importantly, daughter cell adhesion and cytokinesis completion were spatially regulated by distinct states of EB3 phosphorylation on serine 176 by Aurora B. This EB3 phosphorylation was enriched at the midbody and shown to control cortical microtubule growth. These findings uncover differential roles of EB proteins and explain the importance of an Aurora B phosphorylation gradient for the spatiotemporal regulation of microtubule function during mitotic exit and cytokinesis.


2012 ◽  
Vol 125 (2) ◽  
pp. e1-e1 ◽  
Author(s):  
A. R. Morckel ◽  
H. Lusic ◽  
L. Farzana ◽  
J. A. Yoder ◽  
A. Deiters ◽  
...  

Oncogene ◽  
2005 ◽  
Vol 24 (56) ◽  
pp. 8240-8251 ◽  
Author(s):  
Quang-Dé Nguyen ◽  
Olivier De Wever ◽  
Erik Bruyneel ◽  
An Hendrix ◽  
Wan-Zhuo Xie ◽  
...  

2013 ◽  
Vol 382 (2) ◽  
pp. 538-554 ◽  
Author(s):  
Iryna Kozmikova ◽  
Simona Candiani ◽  
Peter Fabian ◽  
Daniela Gurska ◽  
Zbynek Kozmik

2021 ◽  
Author(s):  
Miho Matsuda ◽  
Chih-Wen Chu ◽  
Sergei S Sokol

The reduction of the apical domain, or apical constriction, is a process that occurs in a single cell or is coordinated in a group of cells in the epithelium. Coordinated apical constriction is particularly important when the epithelium is undergoing dynamic morphogenetic events such as furrow or tube formation. However, the underlying mechanisms remain incompletely understood. Here we show that Lim only protein 7 (Lmo7) is a novel activator of apical constriction in the Xenopus superficial ectoderm, which coordinates actomyosin contractility in a group of cells during epithelial morphogenesis. Like other apical constriction regulators, Lmo7 requires the activation of the Rho-Rock-Myosin II pathway to induce apical constriction. However, instead of increasing the phosphorylation of myosin light chain (MLC), Lmo7 binds muscle myosin II heavy chain A (NMIIA) and increases its association with actomyosin bundles at adherens junctions (AJs). Lmo7 overexpression modulates the subcellular distribution of Wtip, a tension marker at AJs, suggesting that Lmo7 generates mechanical forces at AJs. We propose that Lmo7 increases actomyosin contractility at AJs by promoting the formation of actomyosin bundles.


2022 ◽  
Author(s):  
Vishakha Vishwakarma ◽  
Thao Phuong Le ◽  
SeYeon Chung

Epithelial tube formation requires Rho1-dependent actomyosin contractility to generate the cellular forces that drive cell shape changes and rearrangement. Rho1 signaling is activated by G protein-coupled receptor (GPCR) signaling at the cell surface. During Drosophila embryonic salivary gland (SG) invagination, the GPCR ligand Folded gastrulation (Fog) activates Rho1 signaling to drive apical constriction. The SG receptor that transduces the Fog signal into Rho1-dependent myosin activation has not been identified. Here, we reveal that the Smog GPCR transduces Fog signal to regulate Rho kinase accumulation and myosin activation in the apicomedial region of cells to control apical constriction during SG invagination. We also report on unexpected Fog-independent roles for Smog in maintaining epithelial integrity and organizing cortical actin. Our data supports a model wherein Smog regulates distinct myosin pools and actin cytoskeleton in a ligand-dependent manner during epithelial tube formation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Swati Sharma ◽  
Richa Rikhy

Actomyosin contractility is regulated by Rho-GTP in cell migration, cytokinesis and morphogenesis in embryo development. Whereas Rho activation by Rho-GTP exchange factor (GEF), RhoGEF2 is well known in actomyosin contractility during cytokinesis at the base of invaginating membranes in Drosophila cellularization, Rho inhibition by RhoGTPase activating proteins (GAP) remains to be studied. We have found that the RhoGAP, GRAF inhibits actomyosin contractility during cellularization. GRAF is enriched at the cleavage furrow tip during actomyosin assembly and initiation of ring constriction. Graf depletion shows increased Rho-GTP, increased Myosin II and ring hyper constriction dependent upon the loss of the RhoGTPase domain. GRAF and RhoGEF2 are present in a balance for appropriate activation of actomyosin ring constriction. RhoGEF2 depletion and abrogation of Myosin II activation in Rho Kinase mutants suppresses the Graf hyper constriction defect. Therefore, GRAF recruitment restricts Rho-GTP levels in a spatiotemporal manner for inhibiting actomyosin contractility during cellularization.


2019 ◽  
Vol 218 (10) ◽  
pp. 3258-3271
Author(s):  
Charnese Bowes ◽  
Michael Redd ◽  
Malika Yousfi ◽  
Muriel Tauzin ◽  
Emi Murayama ◽  
...  

Actin dynamics is central for cells, and especially for the fast-moving leukocytes. The severing of actin filaments is mainly achieved by cofilin, assisted by Aip1/Wdr1 and coronins. We found that in Wdr1-deficient zebrafish embryos, neutrophils display F-actin cytoplasmic aggregates and a complete spatial uncoupling of phospho-myosin from F-actin. They then undergo an unprecedented gradual disorganization of their nucleus followed by eruptive cell death. Their cofilin is mostly unphosphorylated and associated with F-actin, thus likely outcompeting myosin for F-actin binding. Myosin inhibition reproduces in WT embryos the nuclear instability and eruptive death of neutrophils seen in Wdr1-deficient embryos. Strikingly, depletion of the main coronin of leukocytes, coronin 1A, fully restores the cortical location of F-actin, nuclear integrity, viability, and mobility of Wdr1-deficient neutrophils in vivo. Our study points to an essential role of actomyosin contractility in maintaining the integrity of the nucleus of neutrophils and a new twist in the interplay of cofilin, Wdr1, and coronin in regulating F-actin dynamics.


Sign in / Sign up

Export Citation Format

Share Document