scholarly journals Mechanistic insights into the success of xenobiotic degraders resolved from metagenomes of microbial enrichment cultures

2021 ◽  
Author(s):  
Junhui Li ◽  
Chongjian Jia ◽  
Qihong Lu ◽  
Bruce A Hungate ◽  
Paul Dijkstra ◽  
...  

Even though microbial communities can be more effective at degrading xenobiotics than cultured micro-organisms, yet little is known about the microbial strategies that underpin xenobiotic biodegradation by microbial communities. Here, we employ metagenomic community sequencing to explore the mechanisms that drive the development of 49 xenobiotic-degrading microbial communities, which were enriched from 7 contaminated soils or sediments with a range of xenobiotic compounds. We show that multiple microbial strategies likely co-drive the development of xenobiotic degrading communities, notably (i) presence of genes encoding catabolic enzymes to degrade xenobiotics; (ii) presence of genes encoding efflux pumps; (iii) auxiliary catabolic genes on plasmids; and (iv) positive interactions dominate microbial communities with efficient degradation. Overall, the integrated analyses of microbial ecological strategies advance our understanding of microbial processes driving the biodegradation of xenobiotics and promote the design of bioremediation systems.

2006 ◽  
Vol 72 (9) ◽  
pp. 6183-6193 ◽  
Author(s):  
Edmilson R. Gon�alves ◽  
Hirofumi Hara ◽  
Daisuke Miyazawa ◽  
Julian E. Davies ◽  
Lindsay D. Eltis ◽  
...  

ABSTRACT Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbenzene (ETB), and PCBs. To investigate the expression of these isozymes and better understand how they contribute to the robust degradative capacity of RHA1, we comprehensively analyzed the 9.7-Mb genome of RHA1 for BPH pathway genes and characterized the transcriptome of RHA1 growing on benzoate (BEN), BPH, and ETB. Sequence analyses revealed 54 potential BPH pathway genes, including 28 not previously reported. Transcriptomic analysis with a DNA microarray containing 70-mer probes for 8,213 RHA1 genes revealed a suite of 320 genes of diverse functions that were upregulated during growth both on BPH and on ETB, relative to growth on the control substrate, pyruvate. By contrast, only 65 genes were upregulated during growth on BEN. Quantitative PCR assays confirmed microarray results for selected genes and indicated that some of the catabolic genes were upregulated over 10,000-fold. Our analysis suggests that up to 22 enzymes, including 8 newly identified ones, may function in the BPH pathway of RHA1. The relative expression levels of catabolic genes did not differ for BPH and ETB, suggesting a common regulatory mechanism. This study delineated a suite of catabolic enzymes for biphenyl and alkyl-benzenes in RHA1, which is larger than previously recognized and which may serve as a model for catabolism in other environmentally important bacteria having large genomes.


2001 ◽  
Vol 67 (6) ◽  
pp. 2469-2475 ◽  
Author(s):  
Steven D. Siciliano ◽  
Nathalie Fortin ◽  
Anca Mihoc ◽  
Gesine Wisse ◽  
Suzanne Labelle ◽  
...  

ABSTRACT Plant-bacterial combinations can increase contaminant degradation in the rhizosphere, but the role played by indigenous root-associated bacteria during plant growth in contaminated soils is unclear. The purpose of this study was to determine if plants had the ability to selectively enhance the prevalence of endophytes containing pollutant catabolic genes in unrelated environments contaminated with different pollutants. At petroleum hydrocarbon contaminated sites, two genes encoding hydrocarbon degradation, alkane monooxygenase (alkB) and naphthalene dioxygenase (ndoB), were two and four times more prevalent in bacteria extracted from the root interior (endophytic) than from the bulk soil and sediment, respectively. In field sites contaminated with nitroaromatics, two genes encoding nitrotoluene degradation, 2-nitrotoluene reductase (ntdAa) and nitrotoluene monooxygenase (ntnM), were 7 to 14 times more prevalent in endophytic bacteria. The addition of petroleum to sediment doubled the prevalence ofndoB-positive endophytes in Scirpus pungens, indicating that the numbers of endophytes containing catabolic genotypes were dependent on the presence and concentration of contaminants. Similarly, the numbers of alkB- orndoB-positive endophytes in Festuca arundinaceawere correlated with the concentration of creosote in the soil but not with the numbers of alkB- or ndoB-positive bacteria in the bulk soil. Our results indicate that the enrichment of catabolic genotypes in the root interior is both plant and contaminant dependent.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 298
Author(s):  
Despoina Konstantinou ◽  
Rafael V. Popin ◽  
David P. Fewer ◽  
Kaarina Sivonen ◽  
Spyros Gkelis

Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.


2009 ◽  
Vol 9 (5) ◽  
pp. 482-491 ◽  
Author(s):  
Sardar Khan ◽  
Abd El-Latif Hesham ◽  
Gu Qing ◽  
Liu Shuang ◽  
Jizheng He

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Vikas D. Trivedi ◽  
Pramod Kumar Jangir ◽  
Rakesh Sharma ◽  
Prashant S. Phale

Abstract Carbaryl (1-naphthyl N-methylcarbamate) is a most widely used carbamate pesticide in the agriculture field. Soil isolate, Pseudomonas sp. strain C5pp mineralizes carbaryl via 1-naphthol, salicylate and gentisate, however the genetic organization and evolutionary events of acquisition and assembly of pathway have not yet been studied. The draft genome analysis of strain C5pp reveals that the carbaryl catabolic genes are organized into three putative operons, ‘upper’, ‘middle’ and ‘lower’. The sequence and functional analysis led to identification of new genes encoding: i) hitherto unidentified 1-naphthol 2-hydroxylase, sharing a common ancestry with 2,4-dichlorophenol monooxygenase; ii) carbaryl hydrolase, a member of a new family of esterase; and iii) 1,2-dihydroxy naphthalene dioxygenase, uncharacterized type-II extradiol dioxygenase. The ‘upper’ pathway genes were present as a part of a integron while the ‘middle’ and ‘lower’ pathway genes were present as two distinct class-I composite transposons. These findings suggest the role of horizontal gene transfer event(s) in the acquisition and evolution of the carbaryl degradation pathway in strain C5pp. The study presents an example of assembly of degradation pathway for carbaryl.


2009 ◽  
Vol 55 (No. 10) ◽  
pp. 413-423 ◽  
Author(s):  
V. Valášková ◽  
P. Baldrian

In soil microbial ecology, the effects of environmental factors and their gradients, temporal changes or the response to specific experimental treatments of microbial communities can only be effectively analyzed using methods that address the structural differences among whole communities. Fingerprinting methods are the most appropriate technique for this task when multiple samples must be analyzed. Among the methods currently used to compare microbial communities based on nucleic acid sequences, the techniques based on differences in the melting properties of double-stranded molecules, denaturing gradient gel electrophoresis (DGGE) or temperature gradient gel electrophoresis (TGGE), are the most widely used. Their main advantage is that they provide the possibility to further analyze whole sequences contained in fingerprints using molecular methods. In addition to the analysis of microbial communities based on DNA extracted from soils, DGGE/TGGE can also be used for the assessment of the active part of the community based on the analysis of RNA-derived sequences or for the analysis of sequences of functional genes encoding for proteins involved in important soil processes.


2004 ◽  
Vol 4 ◽  
pp. 9-34 ◽  
Author(s):  
Andon Vassilev ◽  
Jean-Paul Schwitzguebél ◽  
Theo Thewys ◽  
Daniël van der Lelie ◽  
Jaco Vangronsveld

The use of green plants to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) is an emerging technology. In this paper, an overview is given of existing information concerning the use of plants for the remediation of metal-contaminated soils. Both site decontamination (phytoextraction) and stabilization techniques (phytostabilization) are described. In addition to the plant itself, the use of soil amendments for mobilization (in case of phytoextraction) and immobilization (in case of phytostabilization) is discussed. Also, the economical impacts of changed land-use, eventual valorization of biomass, and cost-benefit aspects of phytoremediation are treated. In spite of the growing public and commercial interest and success, more fundamental research is needed still to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between metals, soil, plant roots, and micro-organisms (bacteria and mycorrhiza) in the rhizosphere. Further, more demonstration experiments are needed to measure the underlying economics, for publicacceptance and last but not least, to convince policy makers.


2016 ◽  
Author(s):  
Kenta Suzuki ◽  
Katsuhiko Yoshida ◽  
Yumiko Nakanishi ◽  
Shinji Fukuda

AbstractMapping the network of ecological interactions is key to understanding the composition, stability, function and dynamics of microbial communities. In recent years various approaches have been used to reveal microbial interaction networks from metagenomic sequencing data, such as time-series analysis, machine learning and statistical techniques. Despite these efforts it is still not possible to capture details of the ecological interactions behind complex microbial dynamics.We developed the sparse S-map method (SSM), which generates a sparse interaction network from a multivariate ecological time-series without presuming any mathematical formulation for the underlying microbial processes. The advantage of the SSM over alternative methodologies is that it fully utilizes the observed data using a framework of empirical dynamic modelling. This makes the SSM robust to non-equilibrium dynamics and underlying complexity (nonlinearity) in microbial processes.We showed that an increase in dataset size or a decrease in observational error improved the accuracy of SSM whereas, the accuracy of a comparative equation-based method was almost unchanged for both cases and equivalent to the SSM at best. Hence, the SSM outperformed a comparative equation-based method when datasets were large and the magnitude of observational errors were small. The results were robust to the magnitude of process noise and the functional forms of inter-specific interactions that we tested. We applied the method to a microbiome data of six mice and found that there were different microbial interaction regimes between young to middle age (4-40 week-old) and middle to old age (36-72 week-old) mice.The complexity of microbial relationships impedes detailed equation-based modeling. Our method provides a powerful alternative framework to infer ecological interaction networks of microbial communities in various environments and will be improved by further developments in metagenomics sequencing technologies leading to increased dataset size and improved accuracy and precision.


Sign in / Sign up

Export Citation Format

Share Document