scholarly journals Critical evaluation of kinetic schemes for coagulation

2021 ◽  
Author(s):  
Alexandre Ranc ◽  
Salome Bru ◽  
Simon Mendez ◽  
Muriel Giansily-Blaizot ◽  
Franck Nicoud ◽  
...  

AbstractComputational models of the coagulation cascade are used for a wide range of applications in bio-medical engineering such as drug and bio-medical device developments. However, a lack of robustness of numerical models has been highlighted when studying clinically relevant scenarios. In order to develop more robust models, numerical simulations need to be confronted with realistic situations relevant to clinical practice. In this work, two well-established numerical representations of the coagulation cascade initiated by the intrinsic and extrinsic systems, respectively, were compared with thrombin generation assays considering realistic pathological conditions. Proper modifications were needed to align the in vitro and in silico data, namely; adapting initial conditions to the thrombin assay system, omitting reactions irrelevant to our case study, and improving the fitting of some reaction rates. The modified models were able to capture the experimental trends of thrombin generation for a range of concentrations of factors XII, XI, and VIII for cases in which the coagulation cascade is triggered through the extrinsic and intrinsic systems. Our work emphasizes that when existing coagulation cascade models are extrapolated to experimental settings for which they were not calibrated, careful adjustments must be made. We show that the two coagulation models used in this work can predict physiological conditions, but when studying pathological conditions, proper modifications are needed to improve the numerical results.

2010 ◽  
Vol 104 (09) ◽  
pp. 514-522 ◽  
Author(s):  
Thomas Lecompte ◽  
Agnès Tournier ◽  
Lise Morlon ◽  
Monique Marchand-Arvier ◽  
Claude Vigneron ◽  
...  

SummaryCathepsin G (Cath G), a serine-protease found in neutrophils, has been reported to have effects that could either facilitate or impede coagulation. Thrombin generation (CAT method) was chosen to study its overall effect on the process, at a plasma concentration (240 nM) observed after neutrophil activation. Coagulation was triggered by tissue factor in the presence of platelets or phospholipid vesicles. To help identify potential targets of Cath G, plasma depleted of clotting factors or of inhibitors was used. Cath G induced a puzzling combination of two diverging effects of varying intensities depending on the phospholipid surface provided: accelerating the process under the three conditions (shortened clotting time by up to 30%), and impeding the process during the same thrombin generation time-course since thrombin peak and ETP (total thrombin potential) were decreased, up to 45% and 12%, respectively, suggestive of deficient prothrombinase. This is consistent with Cath G working on at least two targets in the coagulation cascade. Our data indicate that coagulation acceleration can be attributed neither to platelet activation and nor to activation of a clotting factor. When TFPI (tissue factor pathway inhibitor) was absent, no effect on lag time was observed and the anticoagulant activity of TFPI was decreased in the presence of Cath G. Consistent with the literature and the hypothesis of deficient prothrombinase, experiments using Russel’s Viper Venom indicate that the anticoagulant effect can be attributed to a deleterious effect on factor V. The clinical relevance of these findings deserves to be studied.


2021 ◽  
Author(s):  
Christian Hunley ◽  
Md Mohsin ◽  
Marcelo Marucho

We present an interactive Mathematica notebook that characterizes the electrical impulses along actin filaments in both muscle and non-muscle cells for a wide range of physiological and pathological conditions. The program is based on a multi-scale (atomic → monomer → filament) approach capable of accounting for the atomistic details of a protein molecular structure, its biological environment, and their impact on the travel distance, velocity, and attenuation of monovalent ionic wave packets propagating along microfilaments. The interactive component allows investigators to conduct original research by choosing the experimental conditions (intracellular Vs in vitro), nucleotide state (ATP Vs ADP), actin isoform (alpha, gamma, beta, and muscle or non-muscle cell), as well as, a conformation model that covers a variety of mutants and wild-type (the control) actin filament. The simplicity of the theoretical formulation and the high performance of the Mathematica software enable the analysis of multiple conditions without computational restrictions. These studies may provide an unprecedented molecular understanding of why and how age, inheritance, and disease conditions induce dysfunctions in the biophysical mechanisms underlying the propagation of electrical signals along actin filaments.


2020 ◽  
Vol 39 (3) ◽  
pp. 207-217
Author(s):  
F. Poitout-Belissent ◽  
D. Culang ◽  
D. Poulin ◽  
R. Samadfan ◽  
S. Cotton ◽  
...  

Thrombin generation assay (TGA) is a sensitive method for the assessment of the global clotting potential of plasma. This kinetic assay can detect both hypocoagulable and hypercoagulable conditions: delayed or reduced thrombin generation leading to a prolonged clotting time, or induced thrombin activity, shifting the coagulation cascade toward thrombosis. The purpose of this study is to qualify the TGA in nonhuman primates (NHP) and rats for its use during nonclinical in vivo and in vitro studies. Blood was drawn from nonanesthetized animals, and platelet-poor plasma was obtained after double centrifugation; coefficients of variation were <10% for all derived parameters of thrombin generation assessed with 5 pM of tissue factor. Thrombin generation was evaluated in vitro in rat and NHP plasmas with ascending doses of unfractionated heparin (UFH), recombinant tissue factor, and anticoagulant compounds. Thrombin generation was decreased with UFH and anticoagulant compounds, but was increased in the presence of tissue factor, in a dose-dependent manner. In a rat model of inflammation, animals were administered a low dose of lipopolysaccharides. Thrombin generation measurements were decreased 3 hours post-LPS administration with a nadir at 24 hours, while thrombin–antithrombin complexes reached a peak at 8 hours, supporting an earlier production of thrombin. In conclusion, these data demonstrated that TGA can be performed in vitro for screening of compounds expected to have effects on coagulation cascade, and thrombin generation can be measured at interim time points during nonclinical in vivo studies in rats and NHP.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5460-5460
Author(s):  
Noriko Konishi ◽  
Katsuhiko Hiroe ◽  
Yasuhiro Imaeda ◽  
Takuya Fujimoto ◽  
Keiji Kubo ◽  
...  

Abstract Thrombin generation serves to amplify the coagulation cascade via positive feedback activation of factor V (FV) and factor VIII. We hypothesized that factor Xa (FXa) inhibitors, unlike thrombin inhibitors, would not block the feedback activation of the coagulation cascade but would have a favorable anticoagulating profile—sufficient to prevent thrombus formation, yet not interfere with hemostatic plug formation. TAK-442 is a newly synthesized, selective FXa inhibitor that strongly inhibits FXa (with a Ki value of 1.8 nM), and displays more than 440x selectivity toward FXa than other serine proteases. In the present study, we compared the effects of TAK-442 versus ximelagatran on FV-mediated positive feedback in vitro, and on their antithrombotic and hemorrhagic effects in a rat model of venous thrombosis. In vitro, TAK-442 gradually inhibited thrombin generation and prolonged prothrombin time (PT) in a dose-dependent manner, while melagatran, an active form of ximelagatran, exhibited a steeper effect at higher doses tested. The PT prolonging potency was increased in FV–deficient human plasma, with CT2 values (the concentration that causes 2 times prolongation of clotting times) of 120 nM for TAK-442 and 32 nM for melagatran, compared with 500 nM and 360 nM for TAK-442 and melagatran, respectively in normal plasma. In the rat model of venous thrombosis, TAK-442 (10 mg/kg, po) prevented thrombus formation by 55% and prolonged PT by 1.3 times of control values; a similar effect was observed in ximelagatran-treated (3 mg/kg, po) animals, with 59% inhibition of thrombus formation and 1.2 times prolongation of PT. TAK-442 at 100 mg/kg, prolonged PT by 2.1 times, with no significant change in bleeding time (BT); in contrast, increasing the dose of ximelagatran to 10 mg/kg, po prolonged PT by 3.9 times and significantly (P&lt;0.025) increased BT. Our data suggest that the differential effects of the two agents on FV-mediated amplification of thrombin generation may underlie the observation of a wider therapeutic window for TAK-442 than for ximelagatran.


Author(s):  
Larry A. Taber

Mechanical forces are closely involved in the construction of an embryo. Experiments have suggested that mechanical feedback plays a role in regulating these forces, but the nature of this feedback is poorly understood. Here, we propose a general principle for the mechanics of morphogenesis, as governed by a pair of evolution equations based on feedback from tissue stress. In one equation, the rate of growth (or contraction) depends on the difference between the current tissue stress and a target (homeostatic) stress. In the other equation, the target stress changes at a rate that depends on the same stress difference. The parameters in these morphomechanical laws are assumed to depend on stress rate. Computational models are used to illustrate how these equations can capture a relatively wide range of behaviours observed in developing embryos, as well as show the limitations of this theory. Specific applications include growth of pressure vessels (e.g. the heart, arteries and brain), wound healing and sea urchin gastrulation. Understanding the fundamental principles of tissue construction can help engineers design new strategies for creating replacement tissues and organs in vitro .


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1760-1760
Author(s):  
Gleb E. Ivanov ◽  
N. Macartney ◽  
E. Stephens ◽  
N. Bowen ◽  
S. Lees ◽  
...  

Abstract Circulating peripheral blood microparticles (MPs) of various cell origin have been described and measured in physiological and a wide range of pathological conditions. MPs are likely to play a role in coagulation either by exposure of procoagulant phospholipids or expression of tissue factor (TF), but the degree of this contribution to global haemostasis is not yet clear. We studied thrombin generation (TG) parameters (lag, peak thrombin, initial velocity (Vini) and maximal velocity (Vmax) in platelet-free (PFP) and platelet-rich plasma (PRP) of normal volunteers (n=9) in presence of corn trypsin inhibitor, using calibrated automated thrombography (CAT). MP-rich plasma was prepared by ultracentrifugation of PFP and reconstitution of pelleted MPs in a reduced volume of autologous MP-free plasma. TG was also measured in MP-depleted supernatant and platelet-free plasma (PFP) filtered through 0.1 μm filter. In MP-rich plasma, triggered with 5pM TF, with no addition of exogenous phospholipids, we found significantly increased peak TG, compared with PFP and supernatant (70.8 +/− 6.3 vs 51.4 +/− 5.0 vs 28.4 +/− 2.2 nM/L thrombin, p=0.024 and p<0.0001 respectively). MP-rich fraction also produced raised Vini (10.3 +/− 0.9 vs 5.0 +/− 0.6 thrombin nM/L/min, p=0.019) and Vmax (18.3 +/− 2.4 vs 6.8 +/− 1.0 thrombin nM/L/min, p=0.004) compared with MP-depleted supernatant. Ultracentrifugation resulted in reduction of peak TG almost by half, compared with native PFP. The augmenting effect of MP-rich plasma on thrombin peak and velocity was shown to be abolished by filtration. In our experiments removal of MPs by filtration of PFP did not affect routine clinical coagulation tests, but resulted in a significant reduction of peak TG (from 51.4 +/− 5.0 to 23.9 +/− 1.4 thrombin nM, p=0.0002), Vini (from 10.2 +/− 0.4 to 5.6 +/− 0.6, p=0.02) and Vmax (from 15.2 +/− 1.8 to 5.9 +/− 0.2, p=0.02) as compared to PFP. In order to assess the contribution of MPs to TG in presence of platelets, MP-rich plasma was added to various dilutions of PRP, using low concentration of TF (0.5pM) as a trigger. Interestingly, addition of MP-rich fraction only marginally augmented PRP with a platelet concentration of 150x109/L, but the enhancement of peak and velocity of TG became more pronounced when platelet concentration was reduced to 1.5x109/L. In a separate set of experiments, we studied TG in PRP in which MP concentration was reduced by dilution with filtered MP-free plasma as compared to PRP diluted with MP-containing PFP. Reduction in PRP MP content did not lead to a significant decrease in TG even at a low platelet concentration (1.5x109/L), when MP concentration was reduced to about 100 times below the physiological level. Our results indicate that MPs contained in PFP of normal donors significantly affect thrombin generation peak and velocity when compared to PFP in which MPs were eliminated by either ultracentifugation or filtration. The in vitro effect of an increased number of MPs on TG is less noticeable in presence of near-physiological platelet count, but contribution of MPs to TG at low platelet concentrations may potentially protect from bleeding in thrombocytopenic states and explain differences in bleeding phenotype. CAT measurement of TG in MP-rich vs MP-poor plasma could serve as a useful tool in assessing these differences.


2020 ◽  
Vol 26 ◽  
pp. 107602962095082
Author(s):  
Mineji Hayakwa ◽  
Takayoshi Ooyasu ◽  
Yoshihiro Sadamoto ◽  
Tomoyo Saito ◽  
Tomonao Yoshida ◽  
...  

We investigated the relationships between circulating procoagulants and trauma severity, including cellular destruction, and the effects of thrombin generation on procoagulants in a rat blunt trauma model. The rats were subjected to tumbling blunt trauma, where they were tumbled for 0, 250, 500, or 1000 revolutions. Creatine kinase, nucleosome, and microparticle plasma levels increased gradually with trauma severity. Strong interrelationships were observed among creatine kinase, nucleosome, and microparticle levels. Time to initiation of thrombin generation shortened with increasing trauma severity. In accordance with trauma severity, prothrombin activity decreased, but the thrombin generation ratio increased. Time to initiation of thrombin generation and the thrombin generation ratio correlated with creatine kinase levels. In an in vitro study, a homogenized muscle solution, which included massive nucleosomes and microparticles, showed accelerated thrombin generation of plasma from healthy subjects. Procoagulants, such as microparticles and nucleosomes, are released from destroyed parenchymal cells immediately after external traumatic force, activating the coagulation cascade. The procoagulants shorten the time to initiation of thrombin generation. Furthermore, although coagulation factors are consumed, the thrombin generation ratio increases.


2015 ◽  
Vol 114 (09) ◽  
pp. 579-592 ◽  
Author(s):  
Paola Canzano ◽  
Laura Rossetti ◽  
Nicola Ferri ◽  
Alessandra Balduini ◽  
Vittorio Abbonante ◽  
...  

SummaryTissue factor (TF), the main activator of the blood coagulation cascade, has been shown to be expressed by platelets. Despite the evidence that both megakaryocytes and platelets express TF mRNA, and that platelets can make de novo protein synthesis, the main mechanism thought to be responsible for the presence of TF within platelets is through the uptake of TF positive microparticles. In this study we assessed 1) whether human megakaryocytes synthesise TF and transfer it to platelets and 2) the contribution of platelet-TF to the platelet hemostatic capacity. In order to avoid the cross-talk with circulating microparticles, we took advantage from an in vitro cultured megakaryoblastic cell line (Meg-01) able to differentiate into megakaryocytes releasing platelet-like particles. We show that functionally active TF is expressed in human megakaryoblasts, increased in megakaryocytes, and is transferred to a subset of shed platelets where it contributes to clot formation. These data were all confirmed in human CD34pos- derived megakaryocytes and in their released platelets. The effect of TF silencing in Meg-megakaryoblasts resulted in a significant reduction of TF expression in these cells and also in Meg-megakaryocytes and Meg-platelets. Moreover, the contribution of platelet-TF to the platelet hemostatic capacity was highlighted by the significant delay in the kinetic of thrombin formation observed in platelets released by TF-silenced megakaryocytes. These findings provide evidences that TF is an endogenously synthesised protein that characterises megakaryocyte maturation and that it is transferred to a subset of newly-released platelets where it is functionally active and able to trigger thrombin generation.


Author(s):  
Yannick Viossat ◽  
Robert Noble

AbstractChallenging the paradigm of the maximum tolerated dose, recent studies have shown that a strategy aiming for containment, not elimination, can control tumor burden more effectively in vitro, in mouse models, and in the clinic. These outcomes are consistent with the hypothesis that emergence of resistance to cancer therapy may be prevented or delayed by exploiting competitive ecological interactions between drug-sensitive and resistant tumor cell subpopulations. However, although various mathematical and computational models have been proposed to explain the superiority of particular containment strategies, this evolutionary approach to cancer therapy lacks a rigorous theoretical foundation. Here we combine extensive mathematical analysis and numerical simulations to establish general conditions under which a containment strategy is expected to control tumor burden more effectively than applying the maximum tolerated dose. We show that when resistant cells are present, an idealized strategy of containing a tumor at a maximum tolerable size maximizes time to treatment failure (that is, the time at which tumor burden becomes intolerable). These results are very general and do not depend on any fitness cost of resistance. We further provide formulas for predicting the clinical benefits attributable to containment strategies in a wide range of scenarios, and we compare outcomes of theoretically optimal treatments with those of more practical protocols. Our results strengthen the rationale for clinical trials of evolutionarily-informed cancer therapy.


2016 ◽  
Vol 6 (2) ◽  
pp. 20150076 ◽  
Author(s):  
Kalyan C. Vinnakota ◽  
Chae Y. Cha ◽  
Patrik Rorsman ◽  
Robert S. Balaban ◽  
Andre La Gerche ◽  
...  

The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.


Sign in / Sign up

Export Citation Format

Share Document