scholarly journals Genomic imprinting drives eusociality

2021 ◽  
Author(s):  
Kenji Matsuura ◽  
Hiromu Ito ◽  
Kazuya Kobayashi ◽  
Haruka Osaki ◽  
Jin Yoshimura ◽  
...  

AbstractThe origin of eusociality, altruistically foregoing personal reproduction to help others, has been a long-standing paradox ever since Darwin. Most eusocial insects and rodents likely evolved from subsocial precursors, in which older offspring “helpers” contribute to the development of younger siblings without a permanent sterile caste. The driving mechanism for the transition from subsociality (with helpers) to eusociality (with lifelong sterile workers) remains an enigma because individuals in subsocial groups are subject to direct natural selection rather than kin selection. Our genomic imprinting theory demonstrates that natural selection generates eusociality in subsocial groups when parental reproductive capacity is linked to a delay in the sexual development of offspring due to sex-antagonistic action of transgenerational epigenetic marks. Focusing on termites, our theory provides the missing evolutionary link to explain the evolution of eusociality from their subsocial wood-feeding cockroach ancestors, and provides a novel framework for understanding the origin of eusociality.

2019 ◽  
Author(s):  
Melanie J. Heckwolf ◽  
Britta S. Meyer ◽  
Robert Häsler ◽  
Marc P. Höppner ◽  
Christophe Eizaguirre ◽  
...  

AbstractWhile environmentally inducible epigenetic marks are discussed as one mechanism of transgenerational plasticity, environmentally stable epigenetic marks emerge randomly. When resulting in variable phenotypes, stable marks can be targets of natural selection analogous to DNA sequence-based adaptation processes. We studied both postulated pathways in natural populations of three-spined sticklebacks (Gasterosteus aculeatus) and sequenced their methylomes and genomes across a salinity cline. Consistent with local adaptation, populations showed differential methylation (pop-DMS) at genes enriched for osmoregulatory processes. In a two-generation experiment, 62% of these pop-DMS were insensitive to salinity manipulation, suggesting that they could be stable targets for natural selection. Two-thirds of the remaining inducible pop-DMS became more similar to patterns detected in wild populations from the corresponding salinity, and this pattern accentuated over consecutive generations, indicating a mechanism of adaptive transgenerational plasticity. Natural DNA methylation patterns can thus be attributed to two epigenetic pathways underlying the rapid emergence of adaptive phenotypes in the face of environmental change.


2021 ◽  
Vol 288 (1944) ◽  
pp. 20202716
Author(s):  
Steve Kett ◽  
Ayush Pathak ◽  
Stefano Turillazzi ◽  
Duccio Cavalieri ◽  
Massimiliano Marvasi

Arthropods can produce a wide range of antifungal compounds, including specialist proteins, cuticular products, venoms and haemolymphs. In spite of this, many arthropod taxa, particularly eusocial insects, make use of additional antifungal compounds derived from their mutualistic association with microbes. Because multiple taxa have evolved such mutualisms, it must be assumed that, under certain ecological circumstances, natural selection has favoured them over those relying upon endogenous antifungal compound production. Further, such associations have been shown to persist versus specific pathogenic fungal antagonists for more than 50 million years, suggesting that compounds employed have retained efficacy in spite of the pathogens' capacity to develop resistance. We provide a brief overview of antifungal compounds in the arthropods’ armoury, proposing a conceptual model to suggest why their use remains so successful. Fundamental concepts embedded within such a model may suggest strategies by which to reduce the rise of antifungal resistance within the clinical milieu.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1465-1472 ◽  
Author(s):  
Vincent Prevot ◽  
Alejandro Lomniczi ◽  
Gabriel Corfas ◽  
Sergio R. Ojeda

Glial erbB-1 and erbB-4 receptors are key components of the process by which neuroendocrine glial cells control LHRH secretion and the onset of female puberty. We now provide evidence that these two signaling systems work in a coordinated fashion to control reproductive function. To generate animals carrying functionally impaired erbB-1 and erbB-4 receptors, we crossed Waved 2 (Wa-2+/+) mice harboring a point mutation of the erbB-1 receptor with mice expressing a dominant-negative erbB-4 receptor in astrocytes. In comparison to single-deficient mice, double-mutant animals exhibited a further delay in the onset of puberty and a strikingly diminished adult reproductive capacity. Ligand-dependent erbB receptor phosphorylation and erbB-mediated MAPK (ERK 1/2) phosphorylation were impaired in mutant astrocytes. Wa-2+/+ or double-mutant astrocytes failed to respond to TGFα with production of prostaglandin E2, one of the factors mediating the stimulatory effect of astroglial erbB receptor activation on LHRH release. Medium conditioned by Wa-2+/+ or double-mutant astrocytes treated with TGFα failed to stimulate LHRH release from GT1–7 cells. The LH response to ovariectomy was significantly attenuated in mutant mice in comparison with wild-type controls. Although the Wa-2 mutation affects all cells bearing erbB-1 receptors, these results suggest that a major defect underlying the reproductive defects of animals with impaired erbB signaling is a decreased ability of glial cells to stimulate LHRH release. Thus, a coordinated involvement of erbB-1 and erbB-4 signaling systems is required for the normalcy of sexual development and the maintenance of mature female reproductive function.


Author(s):  
Samir Okasha

In a standard Darwinian explanation, natural selection takes place at the level of the individual organism, i.e. some organisms enjoy a survival or reproduction advantage over others, which results in evolutionary change. In principle however, natural selection could operate at other hierarchical levels too, above and below that of the organism, for example the level of genes, cells, groups, colonies or even whole species. This possibility gives rise to the ‘levels of selection’ question in evolutionary biology. Group and colony-level selection have been proposed, originally by Darwin, as a means by which altruism can evolve. (In biology, ‘altruism’ refers to behaviour which entails a fitness cost to the individual so behaving, but benefits others.) Though this idea is still alive today, many theorists regard kin selection as a superior explanation for the existence of altruism. Kin selection arises from the fact that relatives share genes, so if an organism behaves altruistically towards its relatives, there is a greater than random chance that the beneficiary of the altruistic action will itself be an altruist. Kin selection is closely bound up with the ‘gene’s eye view’ of evolution, which holds that genes, not organisms, are the true beneficiaries of the evolutionary process. The gene’s eye approach to evolution, though heuristically valuable, does not in itself resolve the levels of selection question, because selection processes that occur at many hierarchical levels can all be seen from a gene’s eye viewpoint. In recent years, the levels of selection discussion has been re-invigorated, and subtly transformed, by the important new work on the ‘major evolutionary transitions’. These transitions occur when a number of free-living biological units, originally capable of surviving and reproducing alone, become integrated into a larger whole, giving rise to a new biological unit at a higher level of organization. Evolutionary transitions are intimately bound up with the levels of selection issue, because during a transition the potential exists for selection to operate simultaneously at two different hierarchical levels.


Author(s):  
Tristram D. Wyatt

The field of behavioural ecology, developed in the 1960s and 1970s, offered new ideas and provided powerful ways of exploring how behaviour evolves. Behavioural ecology examines how the evolution of behaviour is related to an individual’s chance of survival or reproductive success. ‘Winning strategies’ considers the many successes of behavioural ecology in explaining different animal behaviours: the economic decisions made by certain species when feeding or during reproduction; the role of the sexes in parental care; mating systems; sperm competition and cryptic female choice; sexual conflict; altruistic behaviour; kin selection theory; cooperative breeding; and the evolution of eusociality.


1999 ◽  
Vol 22 (5) ◽  
pp. 888-888 ◽  
Author(s):  
Gwen J. Broude

Evidence reveals numerous cross-cultural universals regarding human mental processes and behavior. Similarly, cross-cultural data are consistent with predictions from theories of kin selection, reciprocal altruism, and sexual selection inspired by Darwin's theory of evolution by natural selection. Thus, the “annals of human behaviour” do provide “example[s] fitting the sociobiological bill,” (Lifelines, p. 202) thereby, supporting sociobiological accounts of human behavior.


2011 ◽  
Vol 278 (1723) ◽  
pp. 3313-3320 ◽  
Author(s):  
Andrew F. G. Bourke

Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection) theory. I review recent and past literature to argue that these critiques do not succeed. Inclusive fitness theory has added fundamental insights to natural selection theory. These are the realization that selection on a gene for social behaviour depends on its effects on co-bearers, the explanation of social behaviours as unalike as altruism and selfishness using the same underlying parameters, and the explanation of within-group conflict in terms of non-coinciding inclusive fitness optima. A proposed alternative theory for eusocial evolution assumes mistakenly that workers' interests are subordinate to the queen's, contains no new elements and fails to make novel predictions. The haplodiploidy hypothesis has yet to be rigorously tested and positive relatedness within diploid eusocial societies supports inclusive fitness theory. The theory has made unique, falsifiable predictions that have been confirmed, and its evidence base is extensive and robust. Hence, inclusive fitness theory deserves to keep its position as the leading theory for social evolution.


Author(s):  
Heikki Helanterä

If the logic of natural selection is applied strictly at the level of individual production of offspring, sterile workers in insect societies are enigmatic. How can natural selection ever produce individuals that refrain from reproduction, and how are traits of such individuals that never produce offspring scrutinized and changed through natural selection? The solution to both questions is found in the family structures of insect societies. That is, the sterile helper individuals are evolutionary altruists that give up their own reproduction and instead are helping their kin reproduce and proliferate shared genes in the offspring of the fertile queen. Selection in such cases is not just a matter of individual’s direct reproduction, and instead of own offspring, the currency of the evolutionary success of sterile individuals is inclusive fitness. The concept of inclusive fitness and the process of kin selection are key to understanding the magnificent cooperation we see in insect societies, and reciprocally, insect societies are key case studies of inclusive fitness logic. In extreme cases, such as the highly advanced and sophisticated societies of ants, honeybees, and termites, the division of labor and interdependence of colony members is so complete, that it is justified to talk about a new level of evolutionary individuality. Such increases in the hierarchical complexity of life are called major transitions in evolution. We see adaptations of the colony, rather than individuals, in, e.g., their communication and group behaviors. The division of labor between morphologically differentiated queens and workers is analogous to germline-soma separation of a multicellular organism, justifying the term superorganism for the extreme cases of social lifestyle. Alongside these extreme cases, there is enormous diversity in the social lifestyles across social insect taxa, which provides a window into the balance of cooperation and conflict, and individual reproduction and helping others, in social evolution. Over the last decades, social insect research has been an area where the theoretical and empirical understanding have been developed hand in hand, together with examples of wonderful natural history, and has tremendously improved our understanding of evolution.


Sign in / Sign up

Export Citation Format

Share Document