scholarly journals Rapid inactivation of SARS-CoV-2 variants by continuous and intermittent irradiation with a deep-ultraviolet light-emitting diode (DUV-LED) device

2021 ◽  
Author(s):  
Hiroko Inagaki ◽  
Akatsuki Saito ◽  
Chiho Kaneko ◽  
Hironobu Sugiyama ◽  
Tamaki Okabayashi ◽  
...  

More than 1 year has passed since social activities have been restricted due to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More recently, novel SARS-CoV-2 variants have been spreading around the world, and there is growing concern of higher transmissibility of the variants and weaker protective efficacy of vaccine against the variants. Immediate measures are needed to reduce human exposure to the virus. In this study, the antiviral efficacy of deep-ultraviolet light-emitting diode (DUV-LED) irradiation (280 ± 5 nm, 3.75 mW/cm2) against three SARS-CoV-2 variants was evaluated. For the B.1.1.7, B.1.351, and P.1 strains, the infectious titer reduction rates of 96.3%, 94.6%, and 91.9%, respectively, were already recognized with the irradiation of virus stocks for 1 s, and the rates increased to 99.9%, 99.9%, and 99.8%, respectively, with irradiation for 5 s. We also tested the effect of pulsed DUV-LED irradiation (7.5 mW/cm2, duty rate: 50%, frequency: 1 KHz) under the same output conditions as continuous irradiation, and found that the antiviral efficacy of pulsed and continuous irradiation was the same. These findings suggest that SARS-CoV-2 may be instantly inactivated by DUV-LED irradiation if the DUV-LED device is further developed and optimized to increase its output.

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 754
Author(s):  
Hiroko Inagaki ◽  
Akatsuki Saito ◽  
Chiho Kaneko ◽  
Hironobu Sugiyama ◽  
Tamaki Okabayashi ◽  
...  

More than 1 year has passed since social activities have been restricted due to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More recently, novel SARS-CoV-2 variants have been spreading around the world, and there is growing concern that they may have higher transmissibility and that the protective efficacy of vaccines may be weaker against them. Immediate measures are needed to reduce human exposure to the virus. In this study, the antiviral efficacy of deep-ultraviolet light-emitting diode (DUV-LED) irradiation (280 ± 5 nm, 3.75 mW/cm2) against three SARS-CoV-2 variants was evaluated. For the B.1.1.7, B.1.351, and P.1 variant strains, irradiation of the virus stocks for 1 s resulted in infectious titer reduction rates of 96.3%, 94.6%, and 91.9%, respectively, and with irradiation for 5 s, the rates increased to 99.9%, 99.9%, and 99.8%, respectively. We also tested the effect of pulsed DUV-LED irradiation (7.5 mW/cm2, duty rate: 50%, frequency: 1 kHz) under the same output conditions as for continuous irradiation and found that the antiviral efficacy of pulsed and continuous irradiation was the same. These findings suggest that by further developing and optimizing the DUV-LED device to increase its output, it may be possible to instantly inactivate SARS-CoV-2 with DUV-LED irradiation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takeo Minamikawa ◽  
Takaaki Koma ◽  
Akihiro Suzuki ◽  
Takahiko Mizuno ◽  
Kentaro Nagamatsu ◽  
...  

AbstractInactivation technology for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is certainly a critical measure to mitigate the spread of coronavirus disease 2019 (COVID-19). A deep ultraviolet light-emitting diode (DUV-LED) would be a promising candidate to inactivate SARS-CoV-2, based on the well-known antiviral effects of DUV on microorganisms and viruses. However, due to variations in the inactivation effects across different viruses, quantitative evaluations of the inactivation profile of SARS-CoV-2 by DUV-LED irradiation need to be performed. In the present study, we quantify the irradiation dose of DUV-LED necessary to inactivate SARS-CoV-2. For this purpose, we determined the culture media suitable for the irradiation of SARS-CoV-2 and optimized the irradiation apparatus using commercially available DUV-LEDs that operate at a center wavelength of 265, 280, or 300 nm. Under these conditions, we successfully analyzed the relationship between SARS-CoV-2 infectivity and the irradiation dose of the DUV-LEDs at each wavelength without irrelevant biological effects. In conclusion, total doses of 1.8 mJ/cm2 for 265 nm, 3.0 mJ/cm2 for 280 nm, and 23 mJ/cm2 for 300 nm are required to inactivate 99.9% of SARS-CoV-2. Our results provide quantitative antiviral effects of DUV irradiation on SARS-CoV-2, serving as basic knowledge of inactivation technologies against SARS-CoV-2.


2020 ◽  
Author(s):  
Takeo Minamikawa ◽  
Takaaki Koma ◽  
Akihiro Suzuki ◽  
Takahiko Mizuno ◽  
Kentaro Nagamatsu ◽  
...  

Abstract Inactivation technology for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is certainly a critical measure to mitigate the spread of coronavirus disease 2019 (COVID-19). A deep ultraviolet light-emitting diode (DUV-LED) would be a promising candidate to inactivate SARS-CoV-2, based on the well-known antiviral effects of DUV on microorganisms and viruses. However, due to variations in the inactivation effects across different viruses, quantitative evaluations of the inactivation profile of SARS-CoV-2 by DUV-LED irradiation need to be performed. In the present study, we quantify the irradiation dose of DUV-LED necessary to inactivate SARS-CoV-2. For this purpose, we determined the culture media suitable for the irradiation of SARS-CoV-2 and optimized the irradiation apparatus using commercially available DUV-LEDs that operate at a center wavelength of 265, 280, or 300 nm. Under these conditions, we successfully analyzed the relationship between SARS-CoV-2 infectivity and the irradiation dose of the DUV-LEDs at each wavelength without irrelevant biological effects. In conclusion, total doses of 1.8 mJ/cm2 for 265 nm, 3.0 mJ/cm2 for 280 nm, and 23 mJ/cm2 for 300 nm are required to inactivate 99.9% of SARS-CoV-2. Our results provide quantitative antiviral effects of DUV irradiation on SARS-CoV-2, serving as basic knowledge of inactivation technologies against SARS-CoV-2.


Author(s):  
Hiroko Inagaki ◽  
Akatsuki Saito ◽  
Hironobu Sugiyama ◽  
Tamaki Okabayashi ◽  
Shouichi Fujimoto

AbstractThe spread of novel coronavirus disease 2019 (COVID-19) infections worldwide has raised concerns about the prevention and control of SARS-CoV-2. Devices that rapidly inactivate viruses can reduce the chance of infection through aerosols and contact transmission. This in vitro study demonstrated that irradiation with a deep ultraviolet light-emitting diode (DUV-LED) of 280 ±5 nm wavelength rapidly inactivates SARS-CoV-2 obtained from a COVID-19 patient. Development of devices equipped with DUV-LED is expected to prevent virus invasion through the air and after touching contaminated objects.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Hongfeng Jia ◽  
Huabin Yu ◽  
Zhongjie Ren ◽  
Chong Xing ◽  
Zhongling Liu ◽  
...  

Abstract An aluminum-rich AlGaN layer is commonly implemented to act as an electron-blocking layer (EBL) to block electron overflow from the active region in the conventional deep-ultraviolet light-emitting diodes (DUV LEDs). Herein, we propose a DUV LED device architecture with specially designed band-engineered quantum barriers (QBs) to “serve” as an alternative approach to alleviate such overflow effect, suppressing the electron leakage, and facilitating the electron and hole injection into the active region for efficient radiative recombination. Intriguingly, a much smaller efficiency droop with a significant enhancement of light output power (LOP) by nearly 50% can be achieved at the injection current level of 120 mA in such EBL-free device, in comparison with the conventional EBL-incorporated DUV LED structure. Thus, the EBL-free device architecture provides us an alternative path toward the realization of efficient DUV light emitters.


Author(s):  
Tatsuya Takagi ◽  
Jun Nishikawa ◽  
Masashi Yanagihara ◽  
Soichiro Fukuda ◽  
Naoto Kubota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document