scholarly journals miR-2 contributes to WSSV infection by targeting Caspase 2 in mud crab (Scylla paramamosain)

2021 ◽  
Author(s):  
Yi Gong ◽  
Jiao Chen ◽  
Yalei Cui ◽  
Sheng-Kang Li

As we known, Caspase 2 is widely studied for its apoptosis regulatory function in mammals. However, despite the fundamental role of apoptosis during the anti-viral immune response, the relationship between Caspase 2 and virus infection has not been extensively explored in invertebrates, whether miRNAs are involved in this process also remains unclear. To address this issue, the miRNA-mediated regulation of Caspase 2 in mud crab Scylla paramamosain was characterized in this study. The results suggested that Sp-Caspase 2 could suppress white spot syndrome virus (WSSV) infection via apoptosis induction. The further data showed that Caspase 2 was directly targeted by miR-2 in mud crab. Silencing or overexpression of miR-2 could affect apoptosis and WSSV replication through regulating the expression level of Caspase 2. Taken together, all these results demonstrated the crucial role of miR-2-Caspase 2 pathway in the innate immunity of mud crab and revealed a novel mechanism during anti-viral immune response in marine invertebrates.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009837
Author(s):  
Yi Gong ◽  
Xiaoyuan Wei ◽  
Wanwei Sun ◽  
Xin Ren ◽  
Jiao Chen ◽  
...  

It is well known that exosomes could serve as anti-microbial immune factors in animals. However, despite growing evidences have shown that the homeostasis of the hemolymph microbiota was vital for immune regulation in crustaceans, the relationship between exosomes and hemolymph microbiota homeostasis during pathogenic bacteria infection has not been addressed. Here, we reported that exosomes released from Vibrio parahaemolyticus-infected mud crabs (Scylla paramamosain) could help to maintain the homeostasis of hemolymph microbiota and have a protective effect on the mortality of the host during the infection process. We further confirmed that miR-224 was densely packaged in these exosomes, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex, then the released TRAF6 further interacted with Ecsit to regulate the production of mitochondrial ROS (mROS) and the expression of Anti-lipopolysaccharide factors (ALFs) in recipient hemocytes, which eventually affected hemolymph microbiota homeostasis in response to the pathogenic bacteria infection in mud crab. To the best of our knowledge, this is the first document that reports the role of exosome in the hemolymph microbiota homeostasis modulation during pathogen infection, which reveals the crosstalk between exosomal miRNAs and innate immune response in crustaceans.



2021 ◽  
Vol 120 ◽  
pp. 104050
Author(s):  
Zhanning Xu ◽  
Yujie Wei ◽  
Guizhong Wang ◽  
Haihui Ye


2021 ◽  
Vol 8 ◽  
Author(s):  
An Liu ◽  
Wenyuan Shi ◽  
Dongdong Lin ◽  
Haihui Ye

C-type allatostatins (C-type ASTs) are a family of structurally related neuropeptides found in a wide range of insects and crustaceans. To date, the C-type allatostatin receptor in crustaceans has not been deorphaned, and little is known about its physiological functions. In this study, we aimed to functionally define a C-type ASTs receptor in the mud crab, Scylla paramamosian. We showed that C-type ASTs receptor can be activated by ScypaAST-C peptide in a dose-independent manner and by ScypaAST-CCC peptide in a dose-dependent manner with an IC50 value of 6.683 nM. Subsequently, in vivo and in vitro experiments were performed to investigate the potential roles of ScypaAST-C and ScypaAST-CCC peptides in the regulation of ecdysone (20E) and methyl farnesoate (MF) biosynthesis. The results indicated that ScypaAST-C inhibited biosynthesis of 20E in the Y-organ, whereas ScypaAST-CCC had no effect on the production of 20E. In addition, qRT-PCR showed that both ScypaAST-C and ScypaAST-CCC significantly decreased the level of expression of the MF biosynthetic enzyme gene in the mandibular organ, suggesting that the two neuropeptides have a negative effect on the MF biosynthesis in mandibular organs. In conclusion, this study provided new insight into the physiological roles of AST-C in inhibiting ecdysone biosynthesis. Furthermore, it was revealed that AST-C family peptides might inhibit MF biosynthesis in crustaceans.



2020 ◽  
Vol 21 (7) ◽  
pp. 2297
Author(s):  
Dongdong Lin ◽  
Yujie Wei ◽  
Haihui Ye

Oxytocin (OT)/vasopressin (VP) signaling system is important to the regulation of metabolism, osmoregulation, social behaviours, learning, and memory, while the regulatory mechanism on ovarian development is still unclear in invertebrates. In this study, Spot/vp-like and its receptor (Spot/vpr-like) were identified in the mud crab Scylla paramamosain. Spot/vp-like transcripts were mainly expressed in the nervous tissues, midgut, gill, hepatopancreas, and ovary, while Spot/vpr-like were widespread in various tissues including the hepatopancreas, ovary, and hemocytes. In situ hybridisation revealed that Spot/vp-like mRNA was mainly detected in 6–9th clusters in the cerebral ganglion, and oocytes and follicular cells in the ovary, while Spot/vpr-like was found to localise in F-cells in the hepatopancreas and oocytes in the ovary. In vitro experiment showed that the mRNA expression level of Spvg in the hepatopancreas, Spvgr in the ovary, and 17β-estradiol (E2) content in culture medium were significantly declined with the administration of synthetic SpOT/VP-like peptide. Besides, after the injection of SpOT/VP-like peptide, it led to the significantly reduced expression of Spvg in the hepatopancreas and subduced E2 content in the haemolymph in the crabs. In brief, SpOT/VP signaling system might inhibit vitellogenesis through neuroendocrine and autocrine/paracrine modes, which may be realised by inhibiting the release of E2.



Author(s):  
Chang-Hong Cheng ◽  
Hong-Ling Ma ◽  
Yi-Qin Deng ◽  
Juan Feng ◽  
Xiao-Long Chen ◽  
...  


1998 ◽  
Vol 66 (2) ◽  
pp. 397-402 ◽  
Author(s):  
S. M. Rhind ◽  
H. W. Reid ◽  
S. R. McMillen ◽  
G. Palmarini

AbstractThe relationship between weaning stress-induced changes in stress hormone profiles and immune function was investigated in groups of 10 lambs immunized against adrenocorticotrophic hormone (ACTH; treatment A) or fi-endorphin (treatment B) to reduce the circulating concentrations of cortisol and fi-endorphin respectively. Control animals (treatment C) were immunized against a porcine thyroglobulin carrier protein. Application of weaning stress was associated with significantly elevated plasma cortisol concentrations but no significant increase in fi-endorphin concentrations in C lambs. Immunization against ACTH suppressed the post-weaning increase in cortisol concentration. This was associated with a transient reduction in the lymphocyte stimulation response to keyhole limpet haemocyanin (KLH) antigen in the A animals but there was no effect on the antibody response or interferon-y production by antigen stimulated lymphocytes. There were no significant effects of immunization against fi-endorphin on the capacity to mount antibody or cell-mediated immune responses. It is concluded that weaning stress-induced increases in cortisol did not inhibit the immune response. Since cortisol concentrations and the cell mediated immune response at 8 days after immunization were positively associated it is concluded that these indices are not independent measures of stress.



Author(s):  
Loreto Gesualdo ◽  
Vincenzo Di Leo ◽  
Rosanna Coppo

Abstract The precise pathogenesis of immunoglobulin A nephropathy (IgAN) is still not clearly established but emerging evidence confirms a pivotal role for mucosal immunity. This review focuses on the key role of mucosa-associated lymphoid tissue (MALT) in promoting the onset of the disease, underlying the relationship among microbiota, genetic factors, food antigen, infections, and mucosal immune response. Finally, we evaluate potential therapies targeting microbes and mucosa hyperresponsiveness in IgAN patients.



2020 ◽  
Vol 101 ◽  
pp. 244-251 ◽  
Author(s):  
Zhanning Xu ◽  
Yujie Wei ◽  
Songlin Guo ◽  
Dongdong Lin ◽  
Haihui Ye


2020 ◽  
Vol 11 ◽  
Author(s):  
Yujie Wei ◽  
Dongdong Lin ◽  
Zhanning Xu ◽  
Xiaoman Gao ◽  
Chaoshu Zeng ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document