scholarly journals Correlated Drug Action as a Baseline Additivity Model for Combination Cancer Therapy in Patient Cohorts and Cell Cultures

2021 ◽  
Author(s):  
Adith S Arun ◽  
Sung-Cheol Kim ◽  
Mehmet Eren Ahsen ◽  
Gustavo A Stolovitzky

Identifying and characterizing the effect of combination cancer therapies is of paramount importance in cancer research. The benefit of a combination can either be due to inherent heterogeneity in patient populations or because of molecular synergy between the compounds given in combination, usually studied in cell culture, or both. To shed light and help characterized combinations and their enhanced benefits over single therapies, we introduce Correlated Drug Action (CDA) as a baseline additivity model. We formulate the CDA model as a closed-form expression, which lends itself to be scalable and interpretable, both in the temporal domain (tCDA) to explain survival curves, and in the dose domain (dCDA), to explain dose-response curves. CDA can be used in clinical trials and cell culture experiments. At the level of clinical trials, we demonstrate tCDA's utility in explaining the benefit of clinical combinations, identifying non-additive combinations, and cases where biomarkers may be able to decouple the combination into monotherapies. At the level of cells in culture, dCDA naturally embodies null models such as Bliss additivity and the Highest Single Agent model as special cases, and can be extended to be sham combination compliant. We demonstrate the applicability of dCDA in assessing non-additive combinations and doses. Additionally, we introduce a new synergy metric, Excess over CDA (EOCDA), that incorporates elements of Bliss additivity and dose equivalence concepts in the same measure. CDA is a novel general framework for additivity at the cell line and patient population levels and provides a method to characterize and quantify the action of drug combinations.

Author(s):  
Thomas Spooner ◽  
Rahul Savani

We show that adversarial reinforcement learning (ARL) can be used to produce market marking agents that are robust to adversarial and adaptively-chosen market conditions. To apply ARL, we turn the well-studied single-agent model of Avellaneda and Stoikov [2008] into a discrete-time zero-sum game between a market maker and adversary. The adversary acts as a proxy for other market participants that would like to profit at the market maker's expense. We empirically compare two conventional single-agent RL agents with ARL, and show that our ARL approach leads to: 1) the emergence of risk-averse behaviour without constraints or domain-specific penalties; 2) significant improvements in performance across a set of standard metrics, evaluated with or without an adversary in the test environment, and; 3) improved robustness to model uncertainty. We empirically demonstrate that our ARL method consistently converges, and we prove for several special cases that the profiles that we converge to correspond to Nash equilibria in a simplified single-stage game.


BMJ Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. e041463
Author(s):  
Anita Mansouri ◽  
Naomi McGregor ◽  
Rachel Dunn ◽  
Sam Dobbie ◽  
Jane Holmes ◽  
...  

IntroductionPatients relapsing within 12 months of platinum-based chemotherapy usually have a poorer response to subsequent treatments. To date, extensive research into the mechanism of resistance to platinum agents in the treatment of ovarian cancer has not resulted in improved responses or longer survival. Further experimental work and clinical trials with novel agents are therefore justified to address this unmet need.Patients with ovarian, fallopian tube or primary peritoneal cancer that has relapsed within 12 months of platinum-based chemotherapy will be randomised with stratification for BReast CAncer gene (BRCA) status, prior poly (ADP-ribose) polymerase (PARP) exposure and prior antiangiogenic therapy into weekly paclitaxel (chemotherapy), olaparib or the combination of cediranib and olaparib. They will be followed until disease progression or unacceptable toxicity develops. Our trial design permits two investigations. We will compare the efficacy and tolerability of single-agent olaparib with weekly paclitaxel. We will also compare the efficacy and tolerability of olaparib with the combination of olaparib and cediranib. The required sample size of 138 participants (46 per arm) was calculated using a 20% one-sided type I error, 80% power and 15% dropout rate. Recruitment will last 34 months with a follow-up of 18 months.Methods and analysisEthics and disseminationThis study will be conducted under a UK Medicines and Healthcare Products Regulatory Agency Clinical Trials Authorisation. Approval to conduct the study was obtained from the responsible authority before beginning the study. The sponsor will retain ownership of all data arising from the trial. We aim to publish this research in a specialist peer-reviewed scientific journal on study completion. EudraCT number: 2016-000559-28, ethics reference number: 16/LO/2150.Trial registration numberISRCTN: ISRCTN14784018, clinicaltrials.gov: NCT03117933; Pre-results.


Author(s):  
Pouria Rafsanjani Nejad ◽  
Pradip Shahi Thakuri ◽  
Sunil Singh ◽  
Astha Lamichhane ◽  
Jacob Heiss ◽  
...  

Resistance to single-agent chemotherapy and molecularly targeted drugs prevents sustained efficacy of treatments. To address this challenge, combination drug treatments have been used to improve outcomes for patients. Potential toxicity of combination treatments is a major concern, however, and has led to the failure of several clinical trials in different cancers. The use of cell-based models of normal tissues in preclinical studies enables testing and identifying toxic effects of drug combinations and facilitates an informed decision-making process for advancing the treatments to animal models and clinical trials. Recently, we established that combinations of molecular inhibitors of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase–protein kinase B (PI3K/Akt) pathways effectively and synergistically inhibit growth of BRAFmut and KRASmut colorectal tumor spheroids by blocking feedback signaling of downstream kinase pathways. These pathways are important for cell proliferation, however, and their simultaneous inhibition may cause toxicity to normal cells. We used a cellular spheroid model to study toxicities of drug combinations to human bone marrow and colon. Our results indicated that MAPK and PI3K/Akt inhibitors used simultaneously were only moderately toxic to bone marrow cells but significantly more toxic to colon cells. Our molecular analysis of proliferative cell activities and housekeeping proteins further corroborated these results. Overall, our approach to identify toxic effects of combinations of cancer drugs to normal cells in three-dimensional cultures will facilitate more informed treatment selections for subsequent animal studies.


2011 ◽  
Vol 29 (2) ◽  
pp. 166-173 ◽  
Author(s):  
Bhuvanesh Dave ◽  
Ilenia Migliaccio ◽  
M. Carolina Gutierrez ◽  
Meng-Fen Wu ◽  
Gary C. Chamness ◽  
...  

Purpose Phosphatase and tensin homolog (PTEN) loss or activating mutations of phosphoinositol-3 (PI3) kinase (PIK3CA) may be associated with trastuzumab resistance. Trastuzumab, the humanized human epidermal growth factor receptor 2 (HER2) monoclonal antibody, and lapatinib, an epidermal growth factor receptor/HER2 tyrosine kinase inhibitor, are both established treatments for HER2-overexpressing breast cancers. Understanding of the cellular response to HER2-targeted therapies is needed to tailor treatments and to identify patients less likely to benefit. Methods We evaluated the effect of trastuzumab or lapatinib in three HER2-overexpressing cell lines. We confirmed the in vitro observations in two neoadjuvant clinical trials in patients with HER2 overexpression; 35 patients received trastuzumab as a single agent for the first 3 weeks, then docetaxel every 3 weeks for 12 weeks (trastuzumab regimen), whereas 49 patients received lapatinib as a single agent for 6 weeks, followed by trastuzumab/docetaxel for 12 weeks before primary surgery (lapatinib regimen). Apoptosis, Ki67, p-MAPK, p-AKT, and PTEN were assessed by immunohistochemistry. Genomic DNA was sequenced for PIK3CA mutations. Results Under low PTEN conditions, in vitro data indicate that lapatinib alone and in combination with trastuzumab was effective in decreasing p-MAPK and p-AKT levels, whereas trastuzumab was ineffective. In the clinical trials, we confirmed that low PTEN or activating mutation in PIK3CA conferred resistance to the trastuzumab regimen (P = .015), whereas low PTEN tumors were associated with a high pathologic complete response rate (P = .007). Conclusion Activation of PI3 kinase pathway is associated with trastuzumab resistance, whereas low PTEN predicted for response to lapatinib. These observations support clinical trials with the combination of both agents.


2011 ◽  
Vol 6 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Aruni S. Arachchige Don ◽  
X. F. Steven Zheng

1998 ◽  
Vol 42 (8) ◽  
pp. 1959-1965 ◽  
Author(s):  
Cynthia M. Theodos ◽  
Jeffrey K. Griffiths ◽  
Jennifer D’Onfro ◽  
Alexandra Fairfield ◽  
Saul Tzipori

ABSTRACT Nitazoxanide (NTZ), a drug currently being tested in human clinical trials for efficacy against chronic cryptosporidiosis, was assessed in cell culture and in two animal models. The inhibitory activity of NTZ was compared with that of paromomycin (PRM), a drug that is partially effective against Cryptosporidium parvum. A concentration of 10 μg of NTZ/ml (32 μM) consistently reduced parasite growth in cell culture by more than 90% with little evidence of drug-associated cytotoxicity, in contrast to an 80% reduction produced by PRM at 2,000 μg/ml (3.2 mM). In contrast to its efficacy in vitro, NTZ at either 100 or 200 mg/kg of body weight/day for 10 days was ineffective at reducing the parasite burden in C. parvum-infected, anti-gamma-interferon-conditioned SCID mice. Combined treatment with NTZ and PRM was no more effective than treatment with PRM alone. Finally, NTZ was partially effective at reducing the parasite burden in a gnotobiotic piglet diarrhea model when given orally for 11 days at 250 mg/kg/day but not at 125 mg/kg/day. However, the higher dose of NTZ induced a drug-related diarrhea in piglets that might have influenced its therapeutic efficacy. As we have previously reported, PRM was effective at markedly reducing the parasite burden in piglets at a dosage of 500 mg/kg/day. Our results indicate that of all of the models tested, the piglet diarrhea model most closely mimics the partial response to NTZ treatment reported to occur in patients with chronic cryptosporidiosis.


Author(s):  
Adam C. Palmer ◽  
Benjamin Izar ◽  
Peter K. Sorger

ABSTRACTHundreds of clinical trials are testing whether combination therapies can increase the anti-tumor activity of Immune Checkpoint Inhibitors (ICIs). We find that the benefits of recently reported and approved combinations involving ICIs are fully accounted for by increasing the chance of a single-agent response (drug independence), with no requirement for additive or synergistic efficacy. Thus, the degree of success of combinations involving ICIs with other therapies is largely predictable.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2056
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

A closed form expression for a triple integral not previously considered is derived, in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. The kernel of the integral involves the product of the logarithmic, exponential, quotient radical, and polynomial functions. Special cases are derived in terms of fundamental constants; results are summarized in a table. All results in this work are new.


Sign in / Sign up

Export Citation Format

Share Document