scholarly journals Protein abundance and folding rather than the redox state of Kelch13 determine the artemisinin susceptibility of Plasmodium falciparum

2021 ◽  
Author(s):  
Robin Schumann ◽  
Eileen Bischoff ◽  
Severina Klaus ◽  
Sophie Möhring ◽  
Julia Flock ◽  
...  

Decreased susceptibilities of Plasmodium falciparum towards the endoperoxide antimalarial artemisinin are linked to mutations of residue C580 of Kelch13, which is the homologue of the redox sensor Keap1 in vertebrates. Here, we addressed whether mutations alter the artemisinin susceptibility by modifying the redox properties of Kelch13 or by compromising its native fold or abundance. Using selection-linked integration and the glmS ribozyme, efficient down-regulation of Kelch13 resulted in ring-stage survival rates around 40%. While the loss of a potential disulfide bond between residues C580 and C532 had no effect on the artemisinin suceptibility, the thiol group of C473 could not be replaced. We also established a protocol for the production of recombinant Kelch13. In contrast to cysteine-to-serine replacements, common field mutations resulted in misfolded and insoluble protein. In summary, not the redox properties but impaired folding of Kelch13, resulting in a decreased Kelch13 abundance, is the central parameter for mutant selection.

Author(s):  
Eduard Rovira-Vallbona ◽  
Nguyen Van Hong ◽  
Johanna H Kattenberg ◽  
Ro Mah Huan ◽  
Nguyen Thi Thu Hien ◽  
...  

Abstract Background Artemisinin-based combination therapies (ACTs) have significantly contributed to reduce Plasmodium falciparum malaria burden in Vietnam, but their efficacy is challenged by treatment failure of dihydroartemisinin/piperaquine ACT in Southern provinces. Objectives To assess the efficacy of dihydroartemisinin/piperaquine for uncomplicated P. falciparum malaria in Gia Lai, Central Vietnam, and determine parasite resistance to artemisinin (ClinicalTrials.gov identifier NCT02604966). Methods Sixty patients received either dihydroartemisinin/piperaquine (4 mg/kg/day, 3 days; n = 33) or artesunate monotherapy (4 mg/kg/day, 3 days; n = 27) followed by dihydroartemisinin/piperaquine (AS + DHA/PPQ). Clinical phenotypes were determined during a 42 day follow-up and analysed together with ex vivo susceptibility to antimalarials and molecular markers of drug resistance. Results Day 3 positivity rate was significantly higher in the AS + DHA/PPQ arm compared with dihydroartemisinin/piperaquine (70.4% versus 39.4%, P = 0.016). Parasite clearance time was 95.2 h (AS + DHA/PPQ) versus 71.9 h (dihydroartemisinin/piperaquine, P = 0.063) and parasite clearance half-life was 7.4 h (AS + DHA/PPQ) versus 7.0 h (dihydroartemisinin/piperaquine, P = 0.140). Adequate clinical and parasitological response at Day 42 was 100% in both arms. By RT–qPCR, 36% (19/53) patients remained positive until Day 7. No recurrences were detected. kelch13 artemisinin resistance mutations were found in 87% (39/45) of isolates and 50% (20/40) were KEL1/C580Y. The piperaquine resistance marker plasmepsin-2 was duplicated in 10.4% (5/48). Isolates from Day 3-positive patients (n = 18) had higher ex vivo survival rates to artemisinin compounds (P < 0.048) and prevalence of kelch13 mutations (P = 0.005) than Day 3-negative patients (n = 5). The WHO definition of artemisinin resistance was fulfilled in 60% (24/40) of cases. Conclusions Although dihydroartemisinin/piperaquine remained effective to treat P. falciparum, the high Day 3 positivity rate and prevalence of KEL1 strains calls for continuous monitoring of dihydroartemisinin/piperaquine efficacy in Central Vietnam.


2021 ◽  
Author(s):  
Barbara H. Stokes ◽  
Kelly Rubiano ◽  
Satish K. Dhingra ◽  
Sachel Mok ◽  
Judith Straimer ◽  
...  

AbstractThe emergence of artemisinin (ART) resistance in Plasmodium falciparum parasites has led to increasing rates of treatment failure with first-line ART-based combination therapies (ACTs) in Southeast Asia. In this region, select mutations in K13 can result in delayed parasite clearance rates in vivo and enhanced survival in the ring-stage survival assay (RSA) in vitro. Our genotyping of 3,299 P. falciparum isolates across 11 sub-Saharan countries reveals the continuing dominance of wild-type K13 and confirms the emergence of a K13 R561H variant in Rwanda. Using gene editing, we provide definitive evidence that this mutation, along with M579I and C580Y, can confer variable degrees of in vitro ART resistance in African P. falciparum strains. C580Y and M579I were both associated with substantial fitness costs in African parasites, which may counter-select against their dissemination in high-transmission settings. We also report the impact of multiple K13 mutations, including the predominant variant C580Y, on RSA survival rates and fitness in multiple Southeast Asian strains. No change in ART susceptibility was observed upon editing point mutations in ferrodoxin or mdr2, earlier associated with ART resistance in Southeast Asia. These data point to the lack of an evident biological barrier to mutant K13 mediating ART resistance in Africa, while identifying their detrimental impact on parasite growth.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Jing Wang ◽  
Yufu Huang ◽  
Yuemeng Zhao ◽  
Run Ye ◽  
Dongmei Zhang ◽  
...  

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Robert Noble ◽  
Zóe Christodoulou ◽  
Sue Kyes ◽  
Robert Pinches ◽  
Chris I Newbold ◽  
...  

Antigenic variation in the human malaria parasite Plasmodium falciparum involves sequential and mutually exclusive expression of members of the var multi-gene family and appears to follow a non-random pattern. In this study, using a detailed in vitro gene transcription analysis of the culture-adapted HB3 strain of P. falciparum, we show that antigenic switching is governed by a global activation hierarchy favouring short and highly diverse genes in central chromosomal location. Longer and more conserved genes, which have previously been associated with severe infection in immunologically naive hosts, are rarely activated, however, implying an in vivo fitness advantage possibly through adhesion-dependent survival rates. We further show that a gene’s activation rate is positively associated sequence diversity, which could offer important new insights into the evolution and maintenance of antigenic diversity in P. falciparum malaria.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Monika Jankowska-Döllken ◽  
Cecilia P. Sanchez ◽  
Marek Cyrklaff ◽  
Michael Lanzer

AbstractThe glms ribozyme system has been used as an amenable tool to conditionally control expression of genes of interest. It is generally assumed that insertion of the ribozyme sequence does not affect expression of the targeted gene in the absence of the inducer glucosamine-6-phosphate, although experimental support for this assumption is scarce. Here, we report the unexpected finding that integration of the glms ribozyme sequence in the 3′ untranslated region of a gene encoding a HECT E3 ubiquitin ligase, termed Plasmodium falciparum ubiquitin transferase (PfUT), increased steady state RNA and protein levels 2.5-fold in the human malaria parasite P. falciparum. Overexpression of pfut resulted in an S/M phase-associated lengthening of the parasite’s intraerythrocytic developmental cycle and a reduced merozoite invasion efficiency. The addition of glucosamine partially restored the wild type phenotype. Our study suggests a role of PfUT in controlling cell cycle progression and merozoite invasion. Our study further raises awareness regarding unexpected effects on gene expression when inserting the glms ribozyme sequence into a gene locus.


2011 ◽  
Vol 55 (5) ◽  
pp. 2026-2031 ◽  
Author(s):  
Fabiana Morandi Jordão ◽  
Alexandre Yukio Saito ◽  
Danilo Ciccone Miguel ◽  
Valnice de Jesus Peres ◽  
Emília Akemi Kimura ◽  
...  

ABSTRACTThe increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages ofPlasmodium falciparum(50% inhibitory concentration [IC50] of 20.3 ± 1.0 μM). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage ofP. falciparumand show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Ourin vivoexperiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasitePlasmodium bergheiin mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Faiza Amber Siddiqui ◽  
Rachasak Boonhok ◽  
Mynthia Cabrera ◽  
Huguette Gaelle Ngassa Mbenda ◽  
Meilian Wang ◽  
...  

ABSTRACT Mutations in the Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance. PfK13 is essential for asexual erythrocytic development, but its function is not known. We tagged the PfK13 protein with green fluorescent protein in P. falciparum to study its expression and localization in asexual and sexual stages. We used a new antibody against PfK13 to show that the PfK13 protein is expressed ubiquitously in both asexual erythrocytic stages and gametocytes and is localized in punctate structures, partially overlapping an endoplasmic reticulum marker. We introduced into the 3D7 strain four PfK13 mutations (F446I, N458Y, C469Y, and F495L) identified in parasites from the China-Myanmar border area and characterized the in vitro artemisinin response phenotypes of the mutants. We found that all the parasites with the introduced PfK13 mutations showed higher survival rates in the ring-stage survival assay (RSA) than the wild-type (WT) control, but only parasites with N458Y displayed a significantly higher RSA value (26.3%) than the WT control. After these PfK13 mutations were reverted back to the WT in field parasite isolates, all revertant parasites except those with the C469Y mutation showed significantly lower RSA values than their respective parental isolates. Although the 3D7 parasites with introduced F446I, the predominant PfK13 mutation in northern Myanmar, did not show significantly higher RSA values than the WT, they had prolonged ring-stage development and showed very little fitness cost in in vitro culture competition assays. In comparison, parasites with the N458Y mutations also had a prolonged ring stage and showed upregulated resistance pathways in response to artemisinin, but this mutation produced a significant fitness cost, potentially leading to their lower prevalence in the Greater Mekong subregion. IMPORTANCE Artemisinin resistance has emerged in Southeast Asia, endangering the substantial progress in malaria elimination worldwide. It is associated with mutations in the PfK13 protein, but how PfK13 mediates artemisinin resistance is not completely understood. Here we used a new antibody against PfK13 to show that the PfK13 protein is expressed in all stages of the asexual intraerythrocytic cycle as well as in gametocytes and is partially localized in the endoplasmic reticulum. By introducing four PfK13 mutations into the 3D7 strain and reverting these mutations in field parasite isolates, we determined the impacts of these mutations identified in the parasite populations from northern Myanmar on the ring stage using the in vitro ring survival assay. The introduction of the N458Y mutation into the 3D7 background significantly increased the survival rates of the ring-stage parasites but at the cost of the reduced fitness of the parasites. Introduction of the F446I mutation, the most prevalent PfK13 mutation in northern Myanmar, did not result in a significant increase in ring-stage survival after exposure to dihydroartemisinin (DHA), but these parasites showed extended ring-stage development. Further, parasites with the F446I mutation showed only a marginal loss of fitness, partially explaining its high frequency in northern Myanmar. Conversely, reverting all these mutations, except for the C469Y mutation, back to their respective wild types reduced the ring-stage survival of these isolates in response to in vitro DHA treatment.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1112
Author(s):  
Noriki Kutsumura ◽  
Yasuaki Koyama ◽  
Tsuyoshi Saitoh ◽  
Naoshi Yamamoto ◽  
Yasuyuki Nagumo ◽  
...  

7-Benzylidenenaltrexone (BNTX) and most of its derivatives showed in vitro antimalarial activities against chloroquine-resistant and -sensitive Plasmodium falciparum strains (K1 and FCR3, respectively). In addition, the time-dependent changes of the addition reactions of the BNTX derivatives with 1-propanethiol were examined by 1H-NMR experiments to estimate their thiol group-trapping ability. The relative chemical reactivity of the BNTX derivatives to trap the thiol group of 1-propanethiol was correlated highly with the antimalarial activity. Therefore, the measurements of the thiol group-trapping ability of the BNTX derivatives with a Michael acceptor is expected to become an alternative method for in vitro malarial activity and related assays.


Sign in / Sign up

Export Citation Format

Share Document