scholarly journals The iron maiden. Cytosolic aconitase/IRP1 conformational transition in the regulation of ferritin translation and iron hemostasis

2021 ◽  
Author(s):  
Cecilia Hognon ◽  
Emmanuelle Bignon ◽  
Guillaume Harle ◽  
Nadege Touche ◽  
Stephanie Grandemange ◽  
...  

Maintaining iron homeostasis is fundamental for almost all living being, and its deregulation correlates with severe and debilitating pathologies. The process is made more complicated by the omnipresence of iron and by its role as a fundamental component of a number of crucial metallo proteins. The response to modifications in the amount of the free iron pool is performed via the inhibition of ferritin translation by sequestering consensus messenger RNA (mRNA) sequences. In turn this is regulated by the iron-sensitive conformational equilibrium between aconitase and IRP, mediated by the presence of an iron-sulfur cluster. In this contribution we analyze by full-atom molecular dynamics simulation, the factors leading to both the interaction with mRNA, and the conformational transition. Furthermore, the role of the iron-sulfur cluster in driving the confor-mational transition is assessed by obtaining the related free energy profile via enhanced sampling molecular dynamics simulations.

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1329
Author(s):  
Cécilia Hognon ◽  
Emmanuelle Bignon ◽  
Guillaume Harle ◽  
Nadège Touche ◽  
Stéphanie Grandemange ◽  
...  

Maintaining iron homeostasis is fundamental for almost all living beings, and its deregulation correlates with severe and debilitating pathologies. The process is made more complicated by the omnipresence of iron and by its role as a fundamental component of a number of crucial metallo proteins. The response to modifications in the amount of the free-iron pool is performed via the inhibition of ferritin translation by sequestering consensus messenger RNA (mRNA) sequences. In turn, this is regulated by the iron-sensitive conformational equilibrium between cytosolic aconitase and IRP1, mediated by the presence of an iron–sulfur cluster. In this contribution, we analyze by full-atom molecular dynamics simulation, the factors leading to both the interaction with mRNA and the conformational transition. Furthermore, the role of the iron–sulfur cluster in driving the conformational transition is assessed by obtaining the related free energy profile via enhanced sampling molecular dynamics simulations.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-27-SCI-27
Author(s):  
Tracey Rouault

Abstract Abstract SCI-27 Iron metabolism is regulated in mammals to assure that adequate iron is delivered to the hematopoietic system to support erythropoiesis. In systemic iron metabolism, regulation of both iron uptake from the diet and release from erythrophagocytosing macrophages is coordinated by action of the peptide hormone, hepcidin, which inhibits activity of the iron exporter, ferroportin. In general, high expression of hepcidin diminishes duodenal iron uptake and reduces macrophage iron release, a combination observed in the anemia of chronic disease. Low expression of hepcidin, which is synthesized by hepatocytes and influenced by transferrin receptor 2, HFE, hemojuvelin and bone morphogenetic receptors, facilitates iron uptake. Mutations affecting genes in the hepcidin pathway cause hemochromatosis, characterized by systemic iron overload that affects mainly hepatocytes and cardiac myocytes, but spares the CNS. In contrast, there are several degenerative diseases of the CNS in which neuronal iron overload is prominent and may play a causal role. The underlying pathophysiologies of neuronal brain iron accumulation syndromes remain unclear, even though several causal genes have been identified, including pantothenate kinase 2 and aceruloplasminemia. In some cases, increased iron may be inaccessible, and cells may suffer from functional iron insufficiency, as we propose for animals that lack iron regulatory protein 2. It is also possible that errors in subcellular iron metabolism can lead to mitochondrial iron overload and concomitant cytosolic iron deficiency, a combination observed in Friedreich ataxia, ISCU myopathy, and the sideroblastic anemia caused by glutaredoxin 5 deficiency. In each of these diseases, mitochondrial iron-sulfur cluster assembly is impaired, and it appears that normal regulation of mitochondrial iron homeostasis depends on intact iron-sulfur cluster assembly. Finally, in heme oxygenase 1 deficient animals, macrophages in the spleen and liver die upon erythrophagocytosis, and failure to normally metabolize heme leads to shift of heme iron to proximal tubules and macrophages of the kidney. Thus, treatment of “iron overload” must depend on the underlying causes, and removal of iron is appropriate in hemochromatosis, but more specific forms of therapy are needed for other forms of iron overload. 1. Ye, H. & Rouault, T. A. (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49, 4945–4956. 2. Zhang, A. S. & Enns, C. A. (2009). Molecular mechanisms of normal iron homeostasis. Hematology Am Soc Hematol Educ Program 207–214. 3. Ye, H., Jeong, S. Y., Ghosh, M. C., Kovtunovych, G., Silvestri, L., Ortillo, D., Uchida, N., Tisdale, J., Camaschella, C. & Rouault, T. A. (2010). Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J Clin Invest 120, 1749–1761. 4. Ghosh, M. C., Tong, W. H., Zhang, D., Ollivierre-Wilson, H., Singh, A., Krishna, M. C., Mitchell, J. B. & Rouault, T. A. (2008). Tempol-mediated activation of latent iron regulatory protein activity prevents symptoms of neurodegenerative disease in IRP2 knockout mice. Proc Natl Acad Sci U S A 105, 12028–12033. 5. Crooks, D. R., Ghosh, M. C., Haller, R. G., Tong, W. H. & Rouault, T. A. (2010). Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery. Blood 115, 860–869. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 53 (4) ◽  
pp. 685-691 ◽  
Author(s):  
Kamil Brzóska ◽  
Sylwia Meczyńska ◽  
Marcin Kruszewski

Iron-sulfur clusters-containing proteins participate in many cellular processes, including crucial biological events like DNA synthesis and processing of dioxygen. In most iron-sulfur proteins, the clusters function as electron-transfer groups in mediating one-electron redox processes and as such they are integral components of respiratory and photosynthetic electron transfer chains and numerous redox enzymes involved in carbon, oxygen, hydrogen, sulfur and nitrogen metabolism. Recently, novel regulatory and enzymatic functions of these proteins have emerged. Iron-sulfur cluster proteins participate in the control of gene expression, oxygen/nitrogen sensing, control of labile iron pool and DNA damage recognition and repair. Their role in cellular response to oxidative stress and as a source of free iron ions is also discussed.


2014 ◽  
Vol 196 (6) ◽  
pp. 1238-1249 ◽  
Author(s):  
R. Hidese ◽  
H. Mihara ◽  
T. Kurihara ◽  
N. Esaki

Sign in / Sign up

Export Citation Format

Share Document