scholarly journals Molecular dissection of Carbapenem-resistant Acinetobacter baumannii circulating in Indian hospitals using Whole Genome Sequencing

2021 ◽  
Author(s):  
Steffimol Rose ◽  
Varun Shamanna ◽  
Anthony Underwood ◽  
Geetha Nagaraj ◽  
Akshatha Prasanna ◽  
...  

Objectives: Carbapenem-resistant Acinetobacter baumannii (CRAB) has acquired worldwide recognition as a serious nosocomial infection. It poses a concern to hospitalized patients because of the limited therapeutic options available. Thus, we investigated the molecular epidemiology and antibiotic resistance profiles of A. baumannii isolates in India. Materials and Methods: We characterized 306 retrospective A. baumannii clinical isolates collected from 18 centers across 10 states and 1 Union Territory of India between 2015 and 2019. Molecular epidemiology, and carbapenem resistance were studied by Whole Genome Sequencing. Results: A total of 105 different Sequence Types (STs) were identified including 48 reported STs and 57 Novel STs. 99 isolates were classified into Clonal Complex 451 (CC451) among which ST848 and ST1956 were the common STs. Carbapenemase resistance was confirmed in all the isolates with the presence of intrinsic bla OXA -51-like genes, and the acquired bla OXA-23 and bla NDM-1 genes. Conclusion: Most of the isolates were grouped under clonal complex 451. ST1053 caused an outbreak in Northern India during 2018 and 2019. Novel MLST alleles and STs were also detected, underlining an evolutionary divergence in India. The carbapenem-resistance was dominated by OXA-type carbapenemases and further surveillance of these carbapenem-resistant A. baumannii and antimicrobial stewardship should be strengthened.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S852-S852
Author(s):  
Erica S Shenoy ◽  
Virginia M Pierce ◽  
Mohamad Sater ◽  
Febriana Pangestu ◽  
Ian Herriott ◽  
...  

Abstract Background Detection of nosocomial outbreaks often relies on epidemiological definitions of community and nosocomial acquisition. We report a cluster of three carbapenem-resistant Acinetobacter baumannii (CRAB) infections linked to a single source patient with infections occurring within 2 days of admission to a burn intensive care unit (ICU). The epidemiological investigation was supplemented by whole-genome sequencing (WGS) of clinical and environmental isolates. Methods Study participants included burn ICU patients identified with infections caused by CRAB. A detailed review of patient demographic and clinical data was conducted. Clinical A. baumannii isolates were assessed by antimicrobial susceptibility testing and WGS. Review of infection control practices on the affected unit was followed by environmental sampling. A. baumannii isolates obtained through environmental sampling were assessed for carbapenem resistance and then underwent WGS for comparison to the clinical isolates. Results Three cases of CRAB infection in the affected unit spanning a period of 3 months were linked to a preceding source patient, with CRAB isolates from the four patients differing by 5–7 single nucleotide variations. All case patients had been admitted to the same room within 2 days before development of CRAB infection. Environmental sampling performed while the third case patient occupied the room identified highly contaminated areas, and environmental CRAB isolates linked the patient isolates. The contaminated areas were subsequently re-sampled after enhanced terminal cleaning of the room. No additional CRAB was isolated, but other pathogenic organisms were recovered. Conclusion We report a cluster of three infections caused by highly resistant A. baumannii that occurred in a burn intensive care unit over a period of 3 months, linked to a single source patient. Three case patients developed infections classified as community-acquired using standard epidemiological definitions, however, whole-genome sequencing revealed clonality. An extensive investigation identified the role of environmental reservoirs. Burn patients may be particularly vulnerable to early-onset nosocomial infection from environmental contamination. Disclosures All authors: No reported disclosures.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 201
Author(s):  
Sang Mee Hwang ◽  
Hee Won Cho ◽  
Tae Yeul Kim ◽  
Jeong Su Park ◽  
Jongtak Jung ◽  
...  

Carbapenem-resistant Acinetobacter baumannii (CRAB) outbreaks in hospital settings challenge the treatment of patients and infection control. Understanding the relatedness of clinical isolates is important in distinguishing outbreak isolates from sporadic cases. This study investigated 11 CRAB isolates from a hospital outbreak by whole-genome sequencing (WGS), utilizing various bioinformatics tools for outbreak analysis. The results of multilocus sequence typing (MLST), single nucleotide polymorphism (SNP) analysis, and phylogenetic tree analysis by WGS through web-based tools were compared, and repetitive element polymerase chain reaction (rep-PCR) typing was performed. Through the WGS of 11 A. baumannii isolates, three clonal lineages were identified from the outbreak. The coexistence of blaOXA-23, blaOXA-66, blaADC-25, and armA with additional aminoglycoside-inactivating enzymes, predicted to confer multidrug resistance, was identified in all isolates. The MLST Oxford scheme identified three types (ST191, ST369, and ST451), and, through whole-genome MLST and whole-genome SNP analyses, different clones were found to exist within the MLST types. wgSNP showed the highest discriminatory power with the lowest similarities among the isolates. Using the various bioinformatics tools for WGS, CRAB outbreak analysis was applicable and identified three discrete clusters differentiating the separate epidemiologic relationships among the isolates.


2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Amani Al Fadhli ◽  
Wafaa Jamal ◽  
Vincent O. Rotimi

Introduction. Carbapenem-resistant enterobacterales (CRE) are listed among the most urgent antibiotic resistance threats. Hypothesis. Previous studies on the mechanisms of CRE in Kuwait have focused on carbapenemases. There have been no studies on non-carbapenemase-producing CRE in Kuwait. Aim/Gap Statement. The aim of this study was to investigate the genetic characteristics of non-carbapenemase-producing carbapenem-resistant enterobacterales (NCPE) isolates using whole-genome sequencing (WGS). Methodology. Fourteen confirmed NCPE isolates that were negative for genes encoding carbapenemase production by polymerase chain reaction (PCR) assays using rectal swabs from intensive care unit patients were characterized using phenotypic, PCR and WGS methods. Susceptibility testing was performed via Etest and clonality via multi-locus sequence typing (MLST). Results. All of the isolates were resistant to ertapenem; 78.6 % were resistant to imipenem, meropenem and trimethoprim–sulfamethoxazole. Resistance to the other antibiotics was variable, ranging from 28.5 (colistin) through 50 (tigecycline) and 64.3 (amikacin) up to 85.7 % against both amoxicillin–clavulanic acid and ciprofloxacin. WGS detected several resistance genes mediating the production of β-lactamases, genes encoding an outer-membrane porin permeability mutation resulting in reduced susceptibility to β-lactams, including carbapenems, and genes for multidrug-resistant (MDR) efflux pumps. The isolates also possessed global activator protein MarA, which mediated reduced permeability to β-lactams. The existence of β-lactamase genes, overexpression of MDR efflux pumps and reduced permeability mediated by the porin genes were responsible for carbapenem resistance. Conclusions. This finding reflects the superior detection capabilities offered by WGS analysis, which can be used to complement traditional methods and overcome their limited resolution in clinical settings.


2015 ◽  
Vol 59 (10) ◽  
pp. 6625-6628 ◽  
Author(s):  
Wenjing Wu ◽  
Yu Feng ◽  
Alessandra Carattoli ◽  
Zhiyong Zong

ABSTRACTA carbapenem-resistantEnterobacter cloacaestrain, WCHECl-14653, causing a fatal bloodstream infection, was characterized by genome sequencing and conjugation experiments. The strain carried two carbapenemase genes,blaNDM-1andblaKPC-2, on separate IncF plasmids. The coexistence ofblaNDM-1andblaKPC-2conferred slightly higher-level carbapenem resistance compared with that ofblaNDM-1orblaKPC-2alone, and the coexistence of two IncF plasmids may generate new platforms for spreading carbapenemase genes.


Author(s):  
Rym Lalaoui ◽  
Ana Djukovic ◽  
Sofiane Bakour ◽  
Linda Hadjadj ◽  
Jaime Sanz ◽  
...  

Abstract Background The emergence of carbapenemase-producing (CP) Citrobacter freundii poses a significant threat to public health, especially in high-risk populations. In this study, whole genome sequencing was used to characterize the carbapenem resistance mechanism of three C. freundii clinical isolates recovered from fecal samples of patients with acute leukemia (AL) from Spain. Materials and methods Twelve fecal samples, collected between 2013 and 2015 from 9 patients with AL, were screened for the presence of CP strains by selecting them on MacConkey agar supplemented with ertapenem (0.5 mg/L). Bacteria were identified by MALDI-TOF mass spectrometry and were phenotypically characterized. Whole genome sequencing of C. freundii isolates was performed using the MinION and MiSeq Illumina sequencers. Bioinformatic analysis was performed in order to identify the molecular support of carbapenem resistance and to study the genetic environment of carbapenem resistance encoding genes. Results Three carbapenem-resistant C. freundii strains (imipenem MIC≥32 mg/L) corresponding to three different AL patients were isolated. Positive modified Carba NP test results suggested carbapenemase production. The genomes of each C. freundii tested were assembled into a single chromosomal contig and plasmids contig. In all the strains, the carbapenem resistance was due to the coproduction of OXA-48 and VIM-1 enzymes encoded by genes located on chromosome and on an IncHI2 plasmid, respectively. According to the MLST and the SNPs analysis, all strains belonged to the same clone ST169. Conclusion We report in our study, the intestinal carrying of C. freundii clone ST169 coproducing OXA-48 and VIM-1 identified in leukemic patients.


2014 ◽  
Vol 59 (2) ◽  
pp. 1168-1176 ◽  
Author(s):  
Henan Li ◽  
Fei Liu ◽  
Yawei Zhang ◽  
Xiaojuan Wang ◽  
Chunjiang Zhao ◽  
...  

ABSTRACTAcinetobacter baumanniiis a globally important nosocomial pathogen characterized by an evolving multidrug resistance. A total of 35 representative clinicalA. baumanniistrains isolated from 13 hospitals in nine cities in China from 1999 to 2011, including 32 carbapenem-resistant and 3 carbapenem-susceptibleA. baumanniistrains, were selected for whole-genome sequencing and comparative genomic analysis. Phylogenetic analysis revealed that the earliest strain, strain 1999BJAB11, and two strains isolated in Zhejiang Province in 2004 were the founder strains of carbapenem-resistantA. baumannii. Ten types of AbaR resistance islands were identified, and a previously unreported AbaR island, which comprised a two-component response regulator, resistance-related proteins, and RND efflux system proteins, was identified in two strains isolated in Zhejiang in 2004. Multiple transposons or insertion sequences (ISs) existed in each strain, and these gradually tended to diversify with evolution. Some of these IS elements or transposons were the first to be reported, and most of them were mainly found in strains from two provinces. Genome feature analysis illustrated diversified resistance genes, surface polysaccharides, and a restriction-modification system, even in strains that were phylogenetically and epidemiologically very closely related. IS-mediated deletions were identified in the type VI secretion system region, thecsuEregion, and core lipooligosaccharide (LOS) loci. Recombination occurred in the heme utilization region, and intrinsic resistance genes (blaADCandblaOXA-51-likevariants) and three novelblaOXA-51-likevariants (blaOXA-424,blaOXA-425, andblaOXA-426) were identified. Our results could improve the understanding of the evolutionary processes that contribute to the emergence of carbapenem-resistantA. baumanniistrains and help elucidate the molecular evolutionary mechanism inA. baumannii.


2020 ◽  
Vol 7 (8) ◽  
Author(s):  
David Roach ◽  
Adam Waalkes ◽  
Jorge Abanto ◽  
Joseph Zunt ◽  
Carolina Cucho ◽  
...  

Abstract Background Klebsiella pneumoniae is a bacterial pathogen with increasing rates of resistance to carbapenem antibiotics, but the population structure and genetic drivers of carbapenem-resistant K pneumoniae (CRKP) remain underexplored in developing countries. Carbapenem-resistant K pneumoniae were recently introduced into Peru but have grown rapidly in prevalence, enabling study of this pathogen as it expands into an unaffected environment. Methods In this study, using whole genome sequencing, we show that 3 distinct lineages encompass almost all CRKP identified in the hospital where it was first reported in Peru. Results The most prevalent lineage, ST348, has not been described outside of Europe, raising concern for global dissemination. We identified metallo- β -lactamase NDM-1 as the primary carbapenem resistance effector, which was harbored on a novel vector resulting from recombination between 2 different plasmids, pKP1-NDM-1 and pMS7884A. Conclusions This study is the first of its kind performed in Peru, and it furthers our understanding of the landscape of CRKP infections in Latin America.


2019 ◽  
Vol 78 (3) ◽  
pp. 187-199 ◽  
Author(s):  
Melanie D. Spencer ◽  
Kathryn Winglee ◽  
Catherine Passaretti ◽  
Ashlee M. Earl ◽  
Abigail L. Manson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document