scholarly journals Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting

2021 ◽  
Author(s):  
Charlene Watterston ◽  
Rami Halabi ◽  
Sarah McFarlane ◽  
Sarah J Childs

Vessel growth integrates diverse extrinsic signals with intrinsic signaling cascades to coordinate cell migration and sprouting morphogenesis. The pro-angiogenic effects of Vascular Endothelial Growth Factor (VEGF) are carefully controlled during sprouting to generate an efficiently patterned vascular network. We identify crosstalk between VEGF signaling and that of the secreted ligand Semaphorin 3fb (Sema3fb), one of two zebrafish paralogs of mammalian Sema3F. The sema3fb gene is expressed by endothelial cells in actively sprouting vessels. Loss of sema3fb results in abnormally wide and stunted intersegmental vessel artery sprouts. Although the sprouts initiate at the correct developmental time, they have a reduced migration speed. These sprouts have persistent filopodia and abnormally spaced nuclei suggesting dysregulated control of actin assembly. sema3fb mutants show simultaneously higher expression of pro-angiogenic (VEGF receptor 2 (vegfr2) and delta-like 4 (dll4)) and anti-angiogenic (soluble VEGF receptor 1 (svegfr1)/ soluble Fms Related Receptor Tyrosine Kinase 1 (sflt1)) pathway components. We show increased phospho-ERK staining in migrating angioblasts, consistent with enhanced Vegf activity. Reducing Vegfr2 kinase activity in sema3fb mutants rescues angiogenic sprouting. Our data suggest that Sema3fb plays a critical role in promoting endothelial sprouting through modulating the VEGF signaling pathway, acting as an autocrine cue that modulates intrinsic growth factor signaling.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009769
Author(s):  
Charlene Watterston ◽  
Rami Halabi ◽  
Sarah McFarlane ◽  
Sarah J. Childs

Vessel growth integrates diverse extrinsic signals with intrinsic signaling cascades to coordinate cell migration and sprouting morphogenesis. The pro-angiogenic effects of Vascular Endothelial Growth Factor (VEGF) are carefully controlled during sprouting to generate an efficiently patterned vascular network. We identify crosstalk between VEGF signaling and that of the secreted ligand Semaphorin 3fb (Sema3fb), one of two zebrafish paralogs of mammalian Sema3F. The sema3fb gene is expressed by endothelial cells in actively sprouting vessels. Loss of sema3fb results in abnormally wide and stunted intersegmental vessel artery sprouts. Although the sprouts initiate at the correct developmental time, they have a reduced migration speed. These sprouts have persistent filopodia and abnormally spaced nuclei suggesting dysregulated control of actin assembly. sema3fb mutants show simultaneously higher expression of pro-angiogenic (VEGF receptor 2 (vegfr2) and delta-like 4 (dll4)) and anti-angiogenic (soluble VEGF receptor 1 (svegfr1)/ soluble Fms Related Receptor Tyrosine Kinase 1 (sflt1)) pathway components. We show increased phospho-ERK staining in migrating angioblasts, consistent with enhanced Vegf activity. Reducing Vegfr2 kinase activity in sema3fb mutants rescues angiogenic sprouting. Our data suggest that Sema3fb plays a critical role in promoting endothelial sprouting through modulating the VEGF signaling pathway, acting as an autocrine cue that modulates intrinsic growth factor signaling.


2019 ◽  
Author(s):  
Miri Morgulis ◽  
Tsvia Gildor ◽  
Modi Roopin ◽  
Noa Sher ◽  
Assaf Malik ◽  
...  

AbstractBiomineralization is the process in which living organisms use minerals to form hard structures that protect and support them. Biomineralization is believed to have evolved rapidly and independently in different phyla utilizing existing components used for other purposes. The mechanistic understanding of the regulatory networks that drive biomineralization and their evolution is far from clear. The sea urchin skeletogenesis is an excellent model system for studying both gene regulation and mineral uptake and deposition. The sea urchin calcite spicules are formed within a tubular cavity generated by the skeletogenic cells under the control the vascular endothelial growth factor (VEGF) signaling. The VEGF pathway controls tubulogenesis and vascularization across metazoans while its regulation of biomineralization was only observed in echinoderms. Despite the critical role of VEGF signaling in sea urchin spiculogenesis, the downstream program it activates was largely unknown. Here we study the cellular and molecular machinery activated by the VEGF pathway during sea urchin spiculogenesis and reveal multiple parallels to the regulation of tubulogenesis during vertebrate vascularization. Human VEGF rescues sea urchin VEGF knock-down; VEGF-dependent vesicle deposition plays a significant role in both systems and sea urchin VEGF signaling activates hundreds of genes including biomineralization and vascularization genes. Five upstream transcription factors and three signaling genes active in spiculogenesis are homologous to vertebrate factors that regulate vascularization. Overall, our findings suggest that sea urchin spiculogenesis and vertebrate vascularization diverged from a common ancestral tubulogenesis program, broadly adapted for vascularization and specifically co-opted for biomineralization in the echinoderm phylum.Significance statementThe sea urchin calcite spicules and vertebrate blood vessels are quite distinct in their function, yet both have a tubular structure and are controlled by the vascular endothelial growth factor (VEGF) pathway. Here we study the downstream program by which VEGF pathway drives sea urchin spiculogenesis and find remarkable similarities to the control of vertebrate vascularization. The similarities are observed both in the upstream gene regulatory network, in the downstream effector genes and the cellular processes that VEGF signaling controls at the site of the calcite spicule formation. We speculate that sea urchin spiculogenesis and vertebrate vascularization diverged from a common ancestral tubulogenesis program that was co-opted for biomineralization in the echinoderm phylum.


2010 ◽  
Vol 30 (9) ◽  
pp. 2120-2134 ◽  
Author(s):  
Peter Noy ◽  
Hannah Williams ◽  
Anyaporn Sawasdichai ◽  
Kevin Gaston ◽  
Padma-Sheela Jayaraman

ABSTRACT The proline-rich homeodomain protein (PRH) plays multiple roles in the control of gene expression during embryonic development and in the adult. Vascular endothelial growth factor (VEGF) is a mitogen that stimulates cell proliferation and survival via cell surface receptors including VEGFR-1 and VEGFR-2. VEGF signaling is of critical importance in angiogenesis and hematopoiesis and is elevated in many tumors. Here we show that PRH binds directly to the promoter regions of the Vegf, Vegfr-1, and Vegfr-2 genes and that in each case PRH represses transcription. We demonstrate that overexpression or knockdown of PRH directly impinges on the survival of both leukemic and tumor cells and that the modulation of VEGF and VEGF receptor signaling by PRH mediates these effects. Our findings demonstrate that PRH is a key regulator of the VEGF signaling pathway and describe a mechanism whereby PRH plays an important role in tumorigenesis and leukemogenesis.


2012 ◽  
Vol 30 (10) ◽  
pp. 1129-1136 ◽  
Author(s):  
María J. Pajares ◽  
Jackeline Agorreta ◽  
Marta Larrayoz ◽  
Aurélien Vesin ◽  
Teresa Ezponda ◽  
...  

PurposeAntiangiogenic therapies targeting the vascular endothelial growth factor (VEGF) pathway have yielded more modest clinical benefit to patients with non–small-cell lung cancer (NSCLC) than initially expected. Clinical data suggest a distinct biologic role of the VEGF pathway in the different histologic subtypes of lung cancer. To clarify the influence of histologic differentiation in the prognostic relevance of VEGF-mediated signaling in NSCLC, we performed a concomitant analysis of the expression of three key elements of the VEGF pathway in the earliest stages of the following two principal histologic subtypes: squamous cell carcinoma (SCC) and adenocarcinoma (ADC).Patients and MethodsWe evaluated tumor cell expression of VEGF, VEGF receptor (VEGFR) 1, and VEGFR2 using automatic immunostaining in a series of 298 patients with early-stage NSCLC recruited as part of the multicenter European Early Lung Cancer Detection Group project. A score measuring the VEGF signaling pathway was calculated by adding the tumor cell expression value of VEGF and its two receptors. The results were validated in two additional independent cohorts of patients with NSCLC.ResultsThe combination of high VEGF, VEGFR1, and VEGFR2 protein expression was associated with lower risk of disease progression in early SCC (univariate analysis, P = .008; multivariate analysis, hazard ratio, 0.62; 95% CI, 0.42 to 0.92; P = .02). The results were validated in two independent patient cohorts, confirming the favorable prognostic value of high VEGF signaling score in early lung SCC.ConclusionOur results clearly indicate that the combination of high expression of the three key elements in the VEGF pathway is associated with a good prognosis in patients with early SCC but not in patients with ADC.


2000 ◽  
Vol 74 (22) ◽  
pp. 10699-10706 ◽  
Author(s):  
Loreen J. Savory ◽  
Steven A. Stacker ◽  
Stephen B. Fleming ◽  
Brian E. Niven ◽  
Andrew A. Mercer

ABSTRACT Infection by the parapoxvirus orf virus causes proliferative skin lesions in which extensive capillary proliferation and dilation are prominent histological features. This infective phenotype may be linked to a unique virus-encoded factor, a distinctive new member of the vascular endothelial growth factor (VEGF) family of molecules. We constructed a recombinant orf virus in which the VEGF-like gene was disrupted and show that inactivation of this gene resulted in the loss of three VEGF activities expressed by the parent virus: mitogenesis of vascular endothelial cells, induction of vascular permeability, and activation of VEGF receptor 2. We used the recombinant orf virus to assess the contribution of the viral VEGF to the vascular response seen during orf virus infection of skin. Our results demonstrate that the viral VEGF, while recognizing a unique profile of the known VEGF receptors (receptor 2 and neuropilin 1), is able to stimulate a striking proliferation of blood vessels in the dermis underlying the site of infection. Furthermore, the data demonstrate that the viral VEGF participates in promoting a distinctive pattern of epidermal proliferation. Loss of a functional viral VEGF resulted in lesions with markedly reduced clinical indications of infection. However, viral replication in the early stages of infection was not impaired, and only at later times did it appear that replication of the recombinant virus might be reduced.


2021 ◽  
Vol 9 ◽  
Author(s):  
Aniket Ramshekar ◽  
M. Elizabeth Hartnett

Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide. Blindness can occur from retinal detachment caused by pathologic retinal angiogenesis into the vitreous, termed intravitreal neovascularization (IVNV). Although agents that interfere with the bioactivity of vascular endothelial growth factor (VEGF) are now used to treat IVNV, concerns exist regarding the identification of optimal doses of anti-VEGF for individual infants and the effect of broad VEGF inhibition on physiologic angiogenesis in external organs or in the retina of a preterm infant. Therefore, it is important to understand VEGF signaling in both physiologic and pathologic angiogenesis in the retina. In this manuscript, we review the role of receptors that interact with VEGF in oxygen-induced retinopathy (OIR) models that represent features of ROP pathology. Specifically, we discuss our work regarding the regulation of VEGFR2 signaling in retinal endothelial cells to not only reduce severe ROP but also facilitate physiologic retinal vascular and neuronal development.


Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 1992-1999 ◽  
Author(s):  
Matilde Murga ◽  
Oscar Fernandez-Capetillo ◽  
Giovanna Tosato

AbstractNeuropilin-1 (NRP-1) is a type 1 membrane protein that binds the axon guidance factors belonging to the class-3 semaforin family. In endothelial cells, NRP-1 serves as a co-receptor for vascular endothelial growth factor (VEGF) and regulates VEGF receptor 2 (VEGFR-2)–dependent angiogenesis. Although gene-targeting studies documenting embryonic lethality in NRP-1 null mice have demonstrated a critical role for NRP-1 in vascular development, the activities of NRP-1 in mature endothelial cells have been incompletely defined. Using RNA interference-mediated silencing of NRP-1 or VEGFR-2 in primary human endothelial cells, we confirm that NRP-1 modulates VEGFR-2 signaling-dependent mitogenic functions of VEGF. Importantly, we now show that NRP-1 regulates endothelial cell adhesion to extracellular matrix proteins independently of VEGFR-2. Based on its dual role as an enhancer of VEGF activity and a mediator of endothelial cell adhesiveness described here, NRP-1 emerges as a promising molecular target for the development of antiangiogenic drugs.


2012 ◽  
Vol 302 (3) ◽  
pp. H724-H732 ◽  
Author(s):  
Jin Oshikawa ◽  
Seok-Jo Kim ◽  
Eiji Furuta ◽  
Cristiana Caliceti ◽  
Gin-Fu Chen ◽  
...  

p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs. However, a role of p66Shc in VEGF signaling and physiological responses in ECs is unknown. Here we show that VEGF promotes p66Shc phosphorylation at Ser36 through the JNK/ERK or PKC pathway as well as Rac1 binding to a nonphosphorylated form of p66Shc in ECs. Depletion of endogenous p66Shc with short interfering RNA inhibits VEGF-induced Rac1 activity and ROS production. Fractionation of caveolin-enriched lipid raft demonstrates that p66Shc plays a critical role in VEGFR2 phosphorylation in caveolae/lipid rafts as well as downstream p38MAP kinase activation. This in turn stimulates VEGF-induced EC migration, proliferation, and capillary-like tube formation. These studies uncover a novel role of p66Shc as a positive regulator for ROS-dependent VEGFR2 signaling linked to angiogenesis in ECs and suggest p66Shc as a potential therapeutic target for various angiogenesis-dependent diseases.


Endocrinology ◽  
2013 ◽  
Vol 154 (2) ◽  
pp. 900-910 ◽  
Author(s):  
Yoshiko Wada ◽  
Hiromi Ozaki ◽  
Naomichi Abe ◽  
Asami Mori ◽  
Kenji Sakamoto ◽  
...  

It is well known that withdrawal of progesterone from the maternal circulation is a critical stimulus to parturition in rodents, such as rats and mice. However, mechanisms that determine the timing of progesterone withdrawal are not completely understood. In the present study, we examined whether the vascular endothelial growth factor (VEGF) system in the corpus luteum (CL) contributes to the regulation of circulating progesterone levels and acts as a determinant of the timing of parturition in mice. We found that reduction in the expression levels of VEGF and VEGF receptor-2 in the CL precedes the impairment of luteal circulation and a series of events leading to parturition (i.e., reduction of plasma progesterone, enhancement of myometrium contractility, and onset of parturition). Blocking of VEGF signaling by using the inhibitor of VEGFR tyrosine kinase KRN633 at mid-pregnancy caused a similar sequence of events and induced preterm birth. These results suggest that the VEGF system in the CL plays a critical role in maintaining a high level of circulating progesterone, and determining the timing of parturition in mice.


Sign in / Sign up

Export Citation Format

Share Document