scholarly journals Epicardial HDAC3 promotes myocardial growth through a novel microRNA pathway

2021 ◽  
Author(s):  
Jihyun Jang ◽  
Guang Song ◽  
Qinshan Li ◽  
Xiaosu Song ◽  
Chenleng Cai ◽  
...  

AbstractRationalEstablishment of the myocardial wall requires proper growth cues from nonmyocardial tissues. During heart development, the epicardium and epicardium-derived cells (EPDCs) instruct myocardial growth by secreting essential factors including fibroblast growth factor 9 (FGF9) and insulin-like growth factor 2 (IGF2). However, it is poorly understood how the epicardial secreted factors are regulated, in particular by chromatin modifications for myocardial formation.ObjectiveTo understand whether and how histone deacetylase 3 (HDAC3) in the developing epicardium regulates myocardial growth.Methods and ResultsWe deleted Hdac3 in the developing murine epicardium and mutant hearts showed ventricular myocardial wall hypoplasia with reduction of EPDCs. The cultured embryonic cardiomyocytes with supernatants from Hdac3 knockout (KO) mouse epicardial cells (MECs) also showed decreased proliferation. Genome-wide transcriptomic analysis revealed that Fgf9 and Igf2 were significantly down-regulated in Hdac3 KO MECs. We further found that Fgf9 and Igf2 expression is dependent on HDAC3 deacetylase activity. The supplementation of FGF9 or IGF2 can rescue the myocardial proliferation defects treated by Hdac3 KO supernatant. Mechanistically, we identified that microRNA (miR)-322 and miR-503 were upregulated in Hdac3 KO MECs and Hdac3 epicardial KO hearts. Overexpression of miR-322 or miR-503 repressed FGF9 and IGF2 expression, while knockdown of miR-322 or miR-503 restored FGF9 and IGF2 expression in Hdac3 KO MECs.ConclusionsOur findings reveal a critical signaling pathway in which epicardial HDAC3 promotes compact myocardial growth by stimulating FGF9 and IGF2 through repressing miR-322/miR-503, providing novel insights in elucidating etiology of congenital heart defects, and conceptual strategies to promote myocardial regeneration.

2018 ◽  
Vol 115 (35) ◽  
pp. 8805-8810 ◽  
Author(s):  
Ravi Karra ◽  
Matthew J. Foglia ◽  
Wen-Yee Choi ◽  
Christine Belliveau ◽  
Paige DeBenedittis ◽  
...  

During heart development and regeneration, coronary vascularization is tightly coupled with cardiac growth. Although inhibiting vascularization causes defects in the innate regenerative response of zebrafish to heart injury, angiogenic signals are not known to be sufficient for triggering regeneration events. Here, by using a transgenic reporter strain, we found that regulatory sequences of the angiogenic factor vegfaa are active in epicardial cells of uninjured animals, as well as in epicardial and endocardial tissue adjacent to regenerating muscle upon injury. Additionally, we find that induced cardiac overexpression of vegfaa in zebrafish results in overt hyperplastic thickening of the myocardial wall, accompanied by indicators of angiogenesis, epithelial-to-mesenchymal transition, and cardiomyocyte regeneration programs. Unexpectedly, vegfaa overexpression in the context of cardiac injury enabled ectopic cardiomyogenesis but inhibited regeneration at the site of the injury. Our findings identify Vegfa as one of a select few known factors sufficient to activate adult cardiomyogenesis, while also illustrating how instructive factors for heart regeneration require spatiotemporal control for efficacy.


Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1531-1538 ◽  
Author(s):  
Y. Dor ◽  
T.D. Camenisch ◽  
A. Itin ◽  
G.I. Fishman ◽  
J.A. McDonald ◽  
...  

Normal cardiovascular development is exquisitely dependent on the correct dosage of the angiogenic growth factor and vascular morphogen vascular endothelial growth factor (VEGF). However, cardiac expression of VEGF is also robustly augmented during hypoxic insults, potentially mediating the well-established teratogenic effects of hypoxia on heart development. We report that during normal heart morphogenesis VEGF is specifically upregulated in the atrioventricular (AV) field of the heart tube soon after the onset of endocardial cushion formation (i.e. the endocardium-derived structures that build the heart septa and valves). To model hypoxia-dependent induction of VEGF in vivo, we conditionally induced VEGF expression in the myocardium using a tetracycline-regulated transgenic system. Premature induction of myocardial VEGF in E9.5 embryos to levels comparable with those induced by hypoxia prevented formation of endocardial cushions. When added to explanted embryonic AV tissue, VEGF fully inhibited endocardial-to-mesenchymal transformation. Transformation was also abrogated in AV explants subjected to experimental hypoxia but fully restored in the presence of an inhibitory soluble VEGF receptor 1 chimeric protein. Together, these results suggest a novel developmental role for VEGF as a negative regulator of endocardial-to-mesenchymal transformation that underlies the formation of endocardial cushions. Moreover, ischemia-induced VEGF may be the molecular link between hypoxia and congenital defects in heart septation.


2019 ◽  
Vol 133 (2) ◽  
pp. 225-238 ◽  
Author(s):  
Yifang Xie ◽  
Anyun Ma ◽  
Boshi Wang ◽  
Rui Peng ◽  
Yingchun Jing ◽  
...  

Abstract Tetralogy of Fallot (TOF) is the most common cyanotic form of congenital heart defects (CHDs). The right ventricular hypertrophy is associated with the survival rate of patients with repaired TOF. However, very little is known concerning its genetic etiology. Based on mouse model studies, a disintergrin and metalloprotease 10/17 (ADAM10 and ADAM17) are the key enzymes for the NOTCH and ErbB pathways, which are critical pathways for heart development. Mutations in these two genes have not been previously reported in human TOF patients. In this study, we sequenced ADAM10 and ADAM17 in a Han Chinese CHD cohort comprised of 80 TOF patients, 286 other CHD patients, and 480 matched healthy controls. Three missense variants of ADAM17 were only identified in 80 TOF patients, two of which (Y42D and L659P) are novel and not found in the Exome Aggregation Consortium (ExAC) database. Point mutation knock-in (KI) and ADAM17 knock-out (KO) human embryonic stem cells (hESCs) were generated by CRISPR/Cas9 and programmed to differentiate into cardiomyocytes (CMs). Y42D or L659P KI cells or complete KO cells all developed hypertrophy with disorganized sarcomeres. RNA-seq results showed that phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt), which is downstream of epidermal growth factor receptor (EGFR) signaling, was affected in both ADAM17 KO and KI hESC-CMs. In vitro experiments showed that these two mutations are loss-of-function mutations in shedding heparin-binding EGF-like growth factor (HB-EGF) but not NOTCH signaling. Our results revealed that CM hypertrophy in TOF could be the result of mutations in ADAM17 which affects HB-EGF/ErbB signaling.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Sumbal Sarwar ◽  
Farah Ehsan ◽  
Shabana ◽  
Amna Tahir ◽  
Mahrukh Jamil ◽  
...  

Abstract Background Ventricular septal defects (VSDs) are malformations in the septum separating the heart’s ventricles. VSDs may present as a single anomaly (isolated/nonsyndromic VSD) or as part of a group of phenotypes (syndromic VSD). The exact location of the defect is crucial in linking the defect to the underlying genetic cause. The number of children visiting cardiac surgery units is constantly increasing. However, there are no representative data available on the genetics of VSDs in Pakistani children. Methods Two hundred forty-two subjects (121 VSD children and 121 healthy controls) were recruited from pediatric cardiac units of Lahore. The clinical and demographic data of the subjects were collected. A total of four SNPs, one each from MTRR, GATA4, VEGF, and ISL1 genes were genotyped by PCR-RFLP. Results The results showed that the minor allele (T) frequency (MAFs) for the MTRR gene variant rs1532268 (c.524C > T) was 0.20 and 0.41 in the controls and the cases, respectively, with the genotype frequencies 3, 35, 62% in the controls and 12, 59 and 29% in the cases for TT, CT, CC genotypes, respectively (allelic OR: 5.73, CI: 3.82–8.61, p-value: 5.11 × 10− 7). For the GATA4 variant rs104894073 (c.886G > A), the MAF for the controls and the cases was 0.16 and 0.37, respectively, the frequencies of AA, GA and GG genotypes were 2, 28, and 70% in the controls and 5, 64 and 31% of the cases (allelic OR: 3.08, CI: 2.00–4.74, p-value: 8.36 × 10− 8). The rs699947 (c.-2578C > A) of VEGF gene showed MAF 0.36 and 0.53 for the controls and cases, respectively, with the genotype frequencies 13, 42, and 45% in the controls and 22, 15, and 63% in the cases for the AA, CA, CC (allelic OR: 2.03, CI: 1.41–2.92, p-value: 0.0001). The ISL1 gene variant rs6867206 (g.51356860 T > C), the MAFs were 0.26 and 0.31 in the controls and cases, respectively. The genotype frequencies were 48, 52, 0% in the controls and 39, 61, 0% in the cases for TT, TC, CC genotypes (allelic OR: 0.27, CI: 0.85–1.89, p-value: 0.227). The MTRR, GATA4 and VEGF variants showed association while ISL1 variant did not appear to be associated with the VSD in the recruited cohort. Conclusion This first report in Pakistani children demonstrates that single nucleotide polymorphisms in genes encoding transcription factors, signaling molecules and structural heart genes involved in fetal heart development are associated with developmental heart defects., however further work is needed to validate the results of the current investigation.


2004 ◽  
Vol 24 (16) ◽  
pp. 7179-7187 ◽  
Author(s):  
Bartholomew A. Pederson ◽  
Hanying Chen ◽  
Jill M. Schroeder ◽  
Weinian Shou ◽  
Anna A. DePaoli-Roach ◽  
...  

ABSTRACT Glycogen serves as a repository of glucose in many mammalian tissues. Mice lacking this glucose reserve in muscle, heart, and several other tissues were generated by disruption of the GYS1 gene, which encodes an isoform of glycogen synthase. Crossing mice heterozygous for the GYS1 disruption resulted in a significant underrepresentation of GYS1-null mice in the offspring. Timed matings established that Mendelian inheritance was followed for up to 18.5 days postcoitum (dpc) and that ∼90% of GYS1-null animals died soon after birth due to impaired cardiac function. Defects in cardiac development began between 11.5 and 14.5 dpc. At 18.5 dpc, the hearts were significantly smaller, with reduced ventricular chamber size and enlarged atria. Consistent with impaired cardiac function, edema, pooling of blood, and hemorrhagic liver were seen. Glycogen synthase and glycogen were undetectable in cardiac muscle and skeletal muscle from the surviving null mice, and the hearts showed normal morphology and function. Congenital heart disease is one of the most common birth defects in humans, at up to 1 in 50 live births. The results provide the first direct evidence that the ability to synthesize glycogen in cardiac muscle is critical for normal heart development and hence that its impairment could be a significant contributor to congenital heart defects.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 827
Author(s):  
Lisa J. Martin ◽  
D Woodrow Benson

Congenital heart defects (CHD) are malformations present at birth that occur during heart development. Increasing evidence supports a genetic origin of CHD, but in the process important challenges have been identified. This review begins with information about CHD and the importance of detailed phenotyping of study subjects. To facilitate appropriate genetic study design, we review DNA structure, genetic variation in the human genome and tools to identify the genetic variation of interest. Analytic approaches powered for both common and rare variants are assessed. While the ideal outcome of genetic studies is to identify variants that have a causal role, a more realistic goal for genetic analytics is to identify variants in specific genes that influence the occurrence of a phenotype and which provide keys to open biologic doors that inform how the genetic variants modulate heart development. It has never been truer that good genetic studies start with good planning. Continued progress in unraveling the genetic underpinnings of CHD will require multidisciplinary collaboration between geneticists, quantitative scientists, clinicians, and developmental biologists.


Author(s):  
Shan Ling ◽  
Michael W Jenkins ◽  
Michiko Watanabe ◽  
Stephanie M Ford ◽  
Andrew M Rollins

The etiology of ethanol-related congenital heart defects has been the focus of much study, but most research has concentrated on cellular and molecular mechanisms. We have shown with optical coherence tomography (OCT) that ethanol exposure led to increased retrograde flow and smaller atrioventricular (AV) cushions compared to controls. Since AV cushions play a role in patterning the conduction delay at the atrioventricular junction (AVJ), this study aims to investigate whether ethanol exposure alters the AVJ conduction in early looping hearts and whether this alteration is related to the decreased cushion size. Quail embryos were exposed to a single dose of ethanol at gastrulation, and Hamburger-Hamilton stage 19 - 20 hearts were dissected for imaging. Cardiac conduction was measured using an optical mapping microscope and we imaged the endocardial cushions using OCT. Our results showed that, compared with controls, ethanol-exposed embryos exhibited abnormally fast AVJ conduction and reduced cushion size. However, this increased conduction velocity (CV) did not strictly correlate with decreased cushion volume and thickness. By matching the CV map to the cushion size map, we found that the slowest conduction location was consistently at the atrial side of the AVJ, which had the thinner cushions, not at the thickest cushion location at the ventricular side as expected. Our findings reveal regional differences in the AVJ myocardium even at this early stage in heart development. These findings reveal the early steps leading to the heterogeneity and complexity of conduction at the mature AVJ, a site where arrhythmias can be initiated.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Taylor Y Lu ◽  
Courtney K Domigan ◽  
Vaspour Antanesian ◽  
Yasuhiro Nakashima ◽  
Atsushi Nakano ◽  
...  

Vascular endothelial growth factor (VEGF) is one of the pivotal proangiogenic growth factors that has long contributed to our knowledge of blood vessel and circulatory maintenance as well as angiogenesis in both pathology and pathophysiology. However, the non-canonical functions of VEGF in cardiac morphogenesis have not been well characterized. Here, we examined how VEGF regulates cardiomyocyte cell fate. Using chimeric embryos harboring both wild type and VEGF-null embryonic stem cells, we observed that derivatives of VEGF null cells were preferentially recruited to the atrium of the heart in comparison to the ventricles. To further provide physiologic context of this finding, we used reporter-LacZ staining and RT-PCR and found that endogenous VEGF was indeed expressed at much lower levels in the atrium but highly expressed in the ventricle early in cardiac morphogenesis. These data lead to our hypothesis that cell-autonomous expression of VEGF is a determinant of atrial vs. ventricular cardiomyocyte cell fate. To test this hypothesis, we used a VEGF knock-in mouse model of Sm22Cre x Rosa 26 VEGF. VEGF overexpression in cardiomyocytes (and smooth muscle) at E8.5 resulted in lethality by P1 and thickened atrial and ventricular walls in mutant embryos as characterized by histology (H&E, IF). We further explored the molecular changes underlying this phenotype via microarray and RT-PCR and find disruptions in molecular markers necessary for wall development, specifically: Notch-1, BMP10, Nrg-1. Taken together, our data indicates that aberrant embryonic VEGF signaling disrupts several critical signaling pathways and that overexpression leads to disruption of cardiomyocyte proliferation and cardiac morphogenesis. These findings add to the foundation of better understanding heart development, laying the groundwork for future therapy of congenital and acquired cardiac disease.


Sign in / Sign up

Export Citation Format

Share Document