scholarly journals Variable freshwater influences on the abundance of Vibrio vulnificus in a tropical urban estuary

2021 ◽  
Olivia D. Nigro ◽  
La'Toya I. James-Davis ◽  
Eric Heinen De Carlo ◽  
Yuan-Hui Li ◽  
Grieg F Steward

To better understand the controls on the opportunistic human pathogen Vibrio vulnificus in warm tropical waters, we conducted a year-long investigation in the Ala Wai Canal, a channelized estuary in Honolulu, HI. The abundance of V. vulnificus as determined by qPCR of the hemolysin gene (vvhA), varied spatially and temporally over four orders of magnitude (≤ 3 to 14,000 mL-1). Unlike in temperate and subtropical systems, temperatures were persistently warm (19–31°C) and explained little of the variability in V. vulnificus abundance. Salinity (1–36 ppt) had a significant, but non-linear, relationship with V. vulnificus abundance with highest abundances (> 2,500 mL-1) observed only at salinities from 7 to 22 ppt. V. vulnificus abundances were lower on average in the summer dry season when waters were warmer but more saline. Highest canal-wide average abundances were observed during a time of modest rainfall when moderate salinities and elevated concentrations of reduced nitrogen species and silica suggested a groundwater influence. Distinguishing the abundances of two genotypes of V. vulnificus (C-type and E-type) suggest that C-type strains, which are responsible for most human infections, were usually less abundant (25% on average), but their relative contribution was greater at higher salinities, suggesting a broader salinity tolerance. Generalized regression models suggested up to 67% of sample-to-sample variation in log-transformed V. vulnificus abundance was explained (n = 202) using the measured environmental variables, and up to 97% of the monthly variation in canal-wide average concentrations (n = 13) was explained with the best subset of four variables.

2018 ◽  
Vol 200 (16) ◽  
Daniel M. Chodur ◽  
Dean A. Rowe-Magnus

ABSTRACT Vibrio vulnificus is a potent opportunistic human pathogen that contaminates the human food chain by asymptomatically colonizing seafood. The expression of the 9-gene brp exopolysaccharide locus mediates surface adherence and is controlled by the secondary signaling molecule c-di-GMP and the regulator BrpT. Here, we show that c-di-GMP and BrpT also regulate the expression of an adjacent 5-gene cluster that includes the cabABC operon, brpT, and another VpsT-like transcriptional regulator gene, brpS. The expression of the 14 genes spanning the region increased with elevated intracellular c-di-GMP levels in a BrpT-dependent manner, save for brpS, which was positively regulated by c-di-GMP and repressed by BrpT. BrpS repressed brpA expression and was required for rugose colony development. The mutation of its consensus WFSA c-di-GMP binding motif blocked these activities, suggesting that BrpS function is dependent on binding c-di-GMP. BrpT specifically bound the cabA, brpT, and brpS promoters, and binding sites homologous to the Vibrio cholerae VpsT binding site were identified upstream of brpA and brpT. Transcription was initiated distal to brpA, and a conserved RfaH-recruiting ops element and a potential Rho utilization (rut) terminator site were identified within the 100-bp leader region, suggesting the integration of early termination and operon polarity suppression into the regulation of brp transcription. The GC content and codon usage of the 16-kb brp region was 5.5% lower relative to that of the flanking DNA, suggesting its recent assimilation via horizontal transfer. Thus, architecturally, the brp region can be considered an acquired biofilm and rugosity island that is subject to complex regulation. IMPORTANCE Biofilm and rugose colony formation are developmental programs that underpin the evolution of Vibrio vulnificus as a potent opportunistic human pathogen and successful environmental organism. A better understanding of the regulatory pathways governing theses phenotypes promotes the development and implementation of strategies to mitigate food chain contamination by this pathogen. c-di-GMP signaling is central to both pathways. We show that the molecule orchestrates the expression of 14 genes clustered in a 16-kb segment of the genome that governs biofilm and rugose colony development. This region exhibits the hallmarks of horizontal transfer, suggesting complex regulatory control of a recently assimilated genetic island governing the colonization response of V. vulnificus.

2018 ◽  
Vol 86 (9) ◽  
In Hwang Kim ◽  
So-Yeon Kim ◽  
Na-Young Park ◽  
Yancheng Wen ◽  
Keun-Woo Lee ◽  

ABSTRACTVibrio vulnificus, an opportunistic human pathogen, produces cyclo-(l-Phe-l-Pro) (cFP), which serves as a signaling molecule controlling the ToxR-dependent expression of innate bacterial genes, and also as a virulence factor eliciting pathogenic effects on human cells by enhancing intracellular reactive oxygen species levels. We found that cFP facilitated the protection ofV. vulnificusagainst hydrogen peroxide. At a concentration of 1 mM, cFP enhanced the level of the transcriptional regulator RpoS, which in turn induced expression ofkatG, encoding hydroperoxidase I, an enzyme that detoxifies H2O2to overcome oxidative stress. We found that cFP upregulated the transcription of the histone-like proteins vHUα and vHUβ through the cFP-dependent regulator LeuO. LeuO binds directly to upstream regions ofvhuAandvhuBto enhance transcription. vHUα and vHUβ then enhance the level of RpoS posttranscriptionally by stabilizing the mRNA. This cFP-mediated ToxR-LeuO-vHUαβ-RpoS pathway also upregulates genes known to be members of the RpoS regulon, suggesting that cFP acts as a cue for the signaling pathway responsible for both the RpoS and the LeuO regulons. Taken together, this study shows that cFP plays an important role as a virulence factor, as well as a signal for the protection of the cognate pathogen.

B. D. Tall ◽  
R. T. Gray ◽  
D. B. Shah

Vibrio vulnificus, an opportunistic human pathogen, is found as member of the normal microflora of shellfish and other seafoods, many of which are eaten raw. Though usually not harmful, V. vulnificus is responsible for causing fulminating septicemia in immunocompromised individuals. In previous light microscopic studies, we showed data suggesting that isogenic unencapsulated phase variants were more adherent to HeLa cells than were counterpart encapsulated phase variants. In this study, we extended our observations by comparing phase variant capsular morphology stained with Alcian blue (AB) and Ruthenium red (RR), and investigated the dynamics of biofilm formation by these organisms to glass coverslips (CS) using quantitative plate counts and scanning electron microscopy (SEM).To characterize the morphology of capsules expressed by these organisms, we stained cells grown on trypticase soy agar containing 1 % NaCl (TSA/NaCl) with AB and then prepared them for electron microscopy (EM) according to the method described by Hendley et al.

2007 ◽  
Vol 75 (7) ◽  
pp. 3282-3289 ◽  
Moqing Liu ◽  
Alejandro F. Alice ◽  
Hiroaki Naka ◽  
Jorge H. Crosa

ABSTRACT Vibrio vulnificus is an opportunistic human pathogen that preferentially infects compromised iron-overloaded patients, causing a fatal primary septicemia with very rapid progress, resulting in a high mortality rate. In this study we determined that the HlyU protein, a virulence factor in V. vulnificus CMCP6, up-regulates the expression of VV20479, a homologue of the Vibrio cholerae RTX (repeats in toxin) toxin gene that we named rtxA1. This gene is part of an operon together with two other open reading frames, VV20481 and VV20480, that encode two predicted proteins, a peptide chain release factor 1 and a hemolysin acyltransferase, respectively. A mutation in rtxA1 not only contributes to the loss of cytotoxic activity but also results in a decrease in virulence, whereas a deletion of VV20481 and VV20480 causes a slight decrease in virulence but with no effect in cytotoxicity. Activation of the expression of the rtxA1 operon by HlyU occurs at the transcription initiation level by binding of the HlyU protein to a region upstream of this operon.

2013 ◽  
Vol 62 (6) ◽  
pp. 935-939 ◽  
Sarika Jain ◽  
Rajni Gaind ◽  
Kunj Bihari Gupta ◽  
Reetika Dawar ◽  
Deepak Kumar ◽  

Yokenella regensburgei is an opportunistic human pathogen of the Enterobacteriaceae family rarely reported to cause human infections. Here, we present a case report of Y. regensburgei bacteraemia from India clinically resembling enteric fever in an apparently immunocompetent paediatric patient.

2010 ◽  
Vol 76 (21) ◽  
pp. 7076-7084 ◽  
C. N. Johnson ◽  
A. R. Flowers ◽  
N. F. Noriea ◽  
A. M. Zimmerman ◽  
J. C. Bowers ◽  

ABSTRACT Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities.

2020 ◽  
Vol 9 (1) ◽  
Kameron D. Garza ◽  
Heather Newkirk ◽  
Russell Moreland ◽  
Carlos F. Gonzalez ◽  
Mei Liu ◽  

Stenotrophomonas maltophilia is an emerging opportunistic human pathogen. In this report, we describe the isolation and genomic annotation of the S. maltophilia-infecting bacteriophage Mendera. A myophage of 159,961 base pairs, Mendera is T4-like and related most closely to Stenotrophomonas phage IME-SM1.

Botany ◽  
2010 ◽  
Vol 88 (8) ◽  
pp. 725-736 ◽  
R. C. Johnson ◽  
Vicky J. Erickson ◽  
Nancy L. Mandel ◽  
J. Bradley St Clair ◽  
Kenneth W. Vance-Borland

Seed transfer zones ensure that germplasm selected for restoration is suitable and sustainable in diverse environments. In this study, seed zones were developed for mountain brome ( Bromus carinatus Hook. & Arn.) in the Blue Mountains of northeastern Oregon and adjoining Washington. Plants from 148 Blue Mountain seed source locations were evaluated in common-garden studies at two contrasting test sites. Data on phenology, morphology, and production were collected over two growing seasons. Plant traits varied significantly and were frequently correlated with annual precipitation and annual maximum temperature at seed source locations (P < 0.05). Plants from warmer locations generally had higher dry matter production, longer leaves, wider crowns, denser foliage, and greater plant height than those from cooler locations. Regression models of environmental variables with the first two principal components (PC 1 and PC 2) explained 46% and 40% of the total variation, respectively. Maps of PC 1 and PC 2 generally corresponded to elevation, temperature, and precipitation gradients. The regression models developed from PC 1 and PC 2 and environmental variables were used to map seed transfer zones. These maps will be useful in selecting mountain brome seed sources for habitat restoration in the Blue Mountains.

2011 ◽  
Vol 77 (10) ◽  
pp. 3443-3450 ◽  
Evelien M. Adriaenssens ◽  
Pieter-Jan Ceyssens ◽  
Vincent Dunon ◽  
Hans-Wolfgang Ackermann ◽  
Johan Van Vaerenbergh ◽  

ABSTRACTPantoea agglomeransis a common soil bacterium used in the biocontrol of fungi and bacteria but is also an opportunistic human pathogen. It has been described extensively in this context, but knowledge of bacteriophages infecting this species is limited. Bacteriophages LIMEzero and LIMElight ofP. agglomeransare lytic phages, isolated from soil samples, belonging to thePodoviridaeand are the firstPantoeaphages of this family to be described. The double-stranded DNA (dsDNA) genomes (43,032 bp and 44,546 bp, respectively) encode 57 and 55 open reading frames (ORFs). Based on the presence of an RNA polymerase in their genomes and their overall genome architecture, these phages should be classified in the subfamily of theAutographivirinae, within the genus of the “phiKMV-like viruses.” Phylogenetic analysis of all the sequenced members of theAutographivirinaesupports the classification of phages LIMElight and LIMEzero as members of the “phiKMV-like viruses” and corroborates the subdivision into the different genera. These data expand the knowledge ofPantoeaphages and illustrate the wide host diversity of phages within the “phiKMV-like viruses.”

Sign in / Sign up

Export Citation Format

Share Document