scholarly journals CDK5 influences the organization of the Circadian Machinery in peripheral clocks

2021 ◽  
Author(s):  
Jürgen Ripperger ◽  
Urs Albrecht ◽  
Andrea Brenna

AbstractCircadian rhythms are self-sustained physiological changes that drive rhythmicity within the 24-hours cycles. Posttranslational modifications (PMTs), such as protein phosphorylation, acetylation, sumoylation, and ubiquitination, are biochemical processes that modify protein structure and functions, ensuring circadian rhythm precision. For example, phosphorylation is considered the most important hallmark of rhythmicity from cyanobacteria to mammals. Cyclin-dependent kinase 5 (CDK5) has been shown to regulate the mammalian SCN’s circadian clock via phosphorylation of PER2. Here, we show that CDK5 influences the clock machinery assembling, using immortalized mouse embryonic fibroblast as an in vitro model for studying the peripheral clock. In fact, the circadian period at the cellular level is lengthened. Furthermore, the clock-controlled gene’s expression amplitude is dampened in Cdk5 ko cell lines, while the phase is delayed about 4 hours.Taken together, we show in vitro that CDK5 is critically involved in regulating the peripheral clocks, influencing their temporal and spatial dynamics.

2020 ◽  
Vol 47 (7) ◽  
pp. 5377-5383
Author(s):  
Şehnaz Yilmaz ◽  
Oguz Yoldas ◽  
Aysin Dumani ◽  
Gizem Guler ◽  
Seda Ilgaz ◽  
...  

2008 ◽  
Vol 22 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Aurélia E. Lewis ◽  
Marte Rusten ◽  
Erling A. Hoivik ◽  
Elisabeth L. Vikse ◽  
Magnus L. Hansson ◽  
...  

Abstract The nuclear receptor steroidogenic factor-1 (SF1) is critical for development and function of steroidogenic tissues. Posttranslational modifications are known to influence the transcriptional capacity of SF1, and it was previously demonstrated that serine 203 is phosphorylated. In this paper we report that serine 203 is phosphorylated by a cyclin-dependent kinase 7 (CDK7)-mediated process. As part of the CDK-activating kinase complex, CDK7 is a component of the basal transcription factor TFIIH, and phosphorylation of SF1 as well as SF1-dependent transcription was clearly reduced in cells carrying a mutation that renders the CDK-activating kinase complex unable to interact with the TFIIH core. Coimmunoprecipitation analyses revealed that SF1 and CDK7 reside in the same complex, and kinase assays demonstrated that immunoprecipitated CDK7 and purified TFIIH phosphorylate SF1 in vitro. The CDK inhibitor roscovitine blocked phosphorylation of SF1, and an inactive form of CDK7 repressed the phosphorylation level and the transactivation capacity of SF1. Structural studies have identified phosphoinositides as potential ligands for SF1. Interestingly, we found that mutations designed to block phospholipid binding dramatically decreased the level of SF1 phosphorylation. Together our results suggest a connection between ligand occupation and phosphorylation and association with the basic transcriptional machinery, indicating an intricate regulation of SF1 transactivation.


1996 ◽  
Vol 132 (3) ◽  
pp. 345-357 ◽  
Author(s):  
X M Wang ◽  
J G Peloquin ◽  
Y Zhai ◽  
J C Bulinski ◽  
G G Borisy

Microtubule-associated protein 4 (MAP4) promotes MT assembly in vitro and is localized along MTs in vivo. These results and the fact that MAP4 is the major MAP in nonneuronal cells suggest that MAP4's normal functions may include the stabilization of MTs in situ. To understand MAP4 function in vivo, we produced a blocking antibody (Ab) to prevent MAP4 binding to MTs. The COOH-terminal MT binding domain of MAP4 was expressed in Escherichia coli as a glutathione transferase fusion protein and was injected into rabbits to produce an antiserum that was then affinity purified and shown to be monospecific for MAP4. This Ab blocked > 95% of MAP4 binding to MTs in an in vitro assay. Microinjection of the affinity purified Ab into human fibroblasts and monkey epithelial cells abolished MAP4 binding to MTs as assayed with a rat polyclonal antibody against the NH2-terminal projection domain of MAP4. The removal of MAP4 from MTs was accompanied by its sequestration into visible MAP4-Ab immunocomplexes. However, the MT network appeared normal. Tubulin photoactivation and nocodazole sensitivity assays indicated that MT dynamics were not altered detectably by the removal of MAP4 from the MTs. Cells progressed to mitosis with morphologically normal spindles in the absence of MAP4 binding to MTs. Depleting MAP4 from MTs also did not affect the state of posttranslational modifications of tubulin subunits. Further, no perturbations of MT-dependent organelle distribution were detected. We conclude that the association of MAP4 with MTs is not essential for MT assembly or for the MT-based functions in cultured cells that we could assay. A significant role for MAP4 is not excluded by these results, however, as MAP4 may be a component of a functionally redundant system.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 996 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Azirwan Guswanto ◽  
Arifin Nugraha ◽  
Tserendorj Munkhjargal ◽  
...  

Cinnamomum verum is a commonly used herbal plant that has several documented properties against various diseases. The existing study evaluated the inhibitory effect of acetonic extract of C. verum (AECV) and ethyl acetate extract of C. verum (EAECV) against piroplasm parasites in vitro and in vivo. The drug-exposure viability assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that AECV and EAECV containing multiple bioactive constituents namely alkaloids, tannins, saponins, terpenoids and remarkable amounts of polyphenols and flavonoids. AECV and EAECV inhibited B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi multiplication at half-maximal inhibitory concentrations (IC50) of 23.1 ± 1.4, 56.6 ± 9.1, 33.4 ± 2.1, 40.3 ± 7.5, 18.8 ± 1.6 µg/mL, and 40.1 ± 8.5, 55.6 ± 1.1, 45.7 ± 1.9, 50.2 ± 6.2, and 61.5 ± 5.2 µg/mL, respectively. In the cytotoxicity assay, AECV and EAECV affected the viability of MDBK, NIH/3T3 and HFF cells with half-maximum effective concentrations (EC50) of 440 ± 10.6, 816 ± 12.7 and 914 ± 12.2 µg/mL and 376 ± 11.2, 610 ± 7.7 and 790 ± 12.4 µg/mL, respectively. The in vivo experiment showed that AECV and EAECV were effective against B. microti in mice at 150 mg/kg. These results showed that C. verum extracts are potential antipiroplasm drugs after further studies in some clinical cases.


Nanomedicine ◽  
2020 ◽  
Vol 15 (20) ◽  
pp. 1927-1945
Author(s):  
Emelie Landh ◽  
Lyn M Moir ◽  
Peta Bradbury ◽  
Daniela Traini ◽  
Paul M Young ◽  
...  

Background: Lymphangioleiomyomatosis (LAM) is characterized by growth of smooth muscle-like cells in the lungs that spread to other organs via lymphatic vessels. Current oral rapamycin treatment is limited by low bioavailability of approximately 15%. Aim: The effect of inhaled rapamycin solid lipid nanoparticles (Rapa-SLNs) size on its penetration through the lymphatics. Method: Three Rapa-SLN formulations (200–1000 nm) were produced and assessed for particle characteristics and further for toxicity and performance in vitro. Results: Rapa-SLNs of 200 nm inhibited proliferation in TSC2-negative mouse embryonic fibroblast cells and penetrated the respiratory epithelium and lymphatic endothelium significantly faster compared with free rapamycin and larger Rapa-SLNs. Conclusion: Rapa-SLN approximately 200 nm allows efficient entry of rapamycin into the lymphatic system and is therefore a promising treatment for LAM patients.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1935
Author(s):  
Emeline Tabouret ◽  
Herui Wang ◽  
Niranjana Amin ◽  
Jinkyu Jung ◽  
Romain Appay ◽  
...  

We examined the efficacy of selective inhibition of cyclin-dependent kinase 5 (CDK5) in glioblastoma by TP5. We analyzed its impact in vitro on CDK5 expression and activity, cell survival, apoptosis and cell cycle. DNA damage was analyzed using the expression of γH2A.X and phosphorylated ATM. Its tolerance and efficacy were assessed on in vivo xenograft mouse models. We showed that TP5 decreased the activity but not the expression of CDK5 and p35. TP5 alone impaired cell viability and colony formation of glioblastoma cell lines and induced apoptosis. TP5 increased DNA damage by inhibiting the phosphorylation of ATM, leading to G1 arrest. Whereas CDK5 activity is increased by DNA-damaging agents such as temozolomide and irradiation, TP5 was synergistic with either temozolomide or irradiation due to an accumulation of DNA damage. Concomitant use of TP5 and either temozolomide or irradiation reduced the phosphorylation of ATM, increased DNA damage, and inhibited the G2/M arrest induced by temozolomide or irradiation. TP5 alone suppressed the tumor growth of orthotopic glioblastoma mouse model. The treatment was well tolerated. Finally, alone or in association with irradiation or temozolomide, TP5 prolonged mouse survival. TP5 alone or in association with temozolomide and radiotherapy is a promising therapeutic option for glioblastoma.


2019 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Marzyeh Haghshenas ◽  
Elham Hoveizi ◽  
Tayebeh Mohammadi ◽  
Seyed Reza Kazemi Nezhad

2021 ◽  
Author(s):  
Lorela Ciraku ◽  
Zachary A Bacigalupa ◽  
Jing Ju ◽  
Rebecca A Moeller ◽  
Rusia H Lee ◽  
...  

Glioblastomas (GBMs) preferentially generate acetyl-CoA from acetate as a fuel source to promote tumor growth. O-GlcNAcylation has been shown to be elevated by increasing O-GlcNAc transferase (OGT) in many cancers and reduced O-GlcNAcylation can block cancer growth. Here, we identify a novel mechanism whereby OGT regulates acetate-dependent acetyl-CoA production by regulating phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by cyclin-dependent kinase 5 (CDK5). OGT is required and sufficient for GBM cell growth and regulates acetate conversion to acetyl-CoA. Elevating O-GlcNAcylation in GBM cells increases phosphorylation of ACSS2 on Ser-267 in a CDK5-dependent manner. Importantly, we show that ACSS2 Ser-267 phosphorylation regulates its stability by reducing polyubiquitination and degradation. ACSS2 Ser-267 is critical for OGT-mediated GBM growth as overexpression of ACSS2 Ser-267 phospho-mimetic rescues growth in vitro and in vivo. Importantly, we show that pharmacologically targeting OGT and CDK5 reduces GBM growth ex vivo. Thus, the OGT/CDK5/ACSS2 pathway may be a way to target altered metabolic dependencies in brain tumors.


Sign in / Sign up

Export Citation Format

Share Document