scholarly journals Isotopic signatures induced by upwelling tag regional fish populations in Lake Tanganyika

2021 ◽  
Author(s):  
Benedikt Ehrenfels ◽  
Julian Junker ◽  
Demmy Namutebi ◽  
Cameron M. Callbeck ◽  
Christian Dinkel ◽  
...  

Lake Tanganyika's pelagic fish sustain the second largest inland fishery in Africa and are under pressure from heavy fishing and global warming related increases in stratification. Only little is known about whether basin-scale hydrodynamics - including a more stratified north and an upwelling-driven south - lead to regional fish populations with varying ecological adaptations. Here, we examine whether the basin-scale dynamics leave distinct isotopic imprints in the pelagic fish of Lake Tanganyika, which may reveal differences in habitat, diet, or lipid content. We conducted two lake-wide campaigns during different seasons and collected physical, nutrient, chlorophyll, phytoplankton and zooplankton data. Additionally, we analyzed the pelagic fish - the clupeids Stolothrissa tanganicae, Limnothrissa miodon and four Lates species - for their isotopic and elemental carbon (C) and nitrogen (N) compositions. The δ13C values were significantly higher in the productive south after the upwelling/mixing period across all trophic levels, implying that the fish have regional foraging grounds, and thus record these latitudinal isotope gradients. However, the degree of regional isolation is insufficient to suppress lake-wide gene flow, suggesting that the fish form regional populations only on a basin-wide and seasonal scale. Based on δ15N and C:N ratios, we found no strong evidence for varying diets or lipid contents between those populations. Additional analyses revealed that isotopic variations between specimens from the same location are not linked to genetic differences. Our findings provide fundamental insight on the connectivity and ecology of Lake Tanganyika's pelagic fish and imply that sustainable management strategies may adopt basin-scale fishing quotas.

2016 ◽  
Vol 73 (12) ◽  
pp. 1914-1921 ◽  
Author(s):  
J. Michael Jech ◽  
Ian H. McQuinn

A debate has developed over the ecosystem consequences following the collapse of Atlantic cod throughout the coastal waters of eastern Canada. The explosive increase in pelagic fish abundance in scientific bottom-trawl catches on the eastern Scotian Shelf has been interpreted as being due to either (i) a “pelagic outburst” of forage fish abundance resulting from predator release or conversely (ii) a change in pelagic fish vertical distribution leading to a “suprabenthic habitat occupation” thereby increasing their availability to bottom trawls. These two interpretations have diametrically opposing ecological consequences and suggest different management strategies for these important forage fish species. We argue that an objective evaluation of the available evidence supports the hypothesis that the abundance of forage fish has not increased in response to the demise of cod and other top predators, and the reliance on a single sampling gear with low catchability has biased and will continue to bias the interpretation of demographic trends of pelagic fish populations. We advocate that multiple sampling technologies providing alternative perspectives are needed for the monitoring and management of the various trophic levels if we are to achieve a balanced and objective understanding of marine ecosystems.


2021 ◽  
Vol 18 (9) ◽  
pp. 2891-2916
Author(s):  
Mariana Hill Cruz ◽  
Iris Kriest ◽  
Yonss Saranga José ◽  
Rainer Kiko ◽  
Helena Hauss ◽  
...  

Abstract. Small pelagic fish off the coast of Peru in the eastern tropical South Pacific (ETSP) support around 10 % of global fish catches. Their stocks fluctuate interannually due to environmental variability which can be exacerbated by fishing pressure. Because these fish are planktivorous, any change in fish abundance may directly affect the plankton and the biogeochemical system. To investigate the potential effects of variability in small pelagic fish populations on lower trophic levels, we used a coupled physical–biogeochemical model to build scenarios for the ETSP and compare these against an already-published reference simulation. The scenarios mimic changes in fish predation by either increasing or decreasing mortality of the model's large and small zooplankton compartments. The results revealed that large zooplankton was the main driver of the response of the community. Its concentration increased under low mortality conditions, and its prey, small zooplankton and large phytoplankton, decreased. The response was opposite, but weaker, in the high mortality scenarios. This asymmetric behaviour can be explained by the different ecological roles of large, omnivorous zooplankton and small zooplankton, which in the model is strictly herbivorous. The response of small zooplankton depended on the antagonistic effects of mortality changes as well as on the grazing pressure by large zooplankton. The results of this study provide a first insight into how the plankton ecosystem might respond if variations in fish populations were modelled explicitly.


2020 ◽  
Author(s):  
Mariana Hill Cruz ◽  
Iris Kriest ◽  
Yonss Saranga José ◽  
Rainer Kiko ◽  
Helena Hauss ◽  
...  

Abstract. Small pelagic fish off the coast of Peru in the Eastern Tropical South Pacific (ETSP) support around 10 % of the global fish catches. Their stocks fluctuate interannually due to environmental variability which can be exacerbated by fishing pressure. Because these fish are planktivorous, any change in fish abundance may directly affect the plankton and the biogeochemical system. To investigate the potential effects of variability in small pelagic fish populations on lower trophic levels, we used a coupled physical-biogeochemical model to build scenarios for the ETSP and compare these against an already published reference simulation. The scenarios mimic changes in fish predation by either increasing or decreasing mortality of the model's large and small zooplankton compartments. The results revealed that large zooplankton was the main driver of the response of the community. Its concentration increased under low mortality conditions and its prey, small zooplankton and large phytoplankton, decreased. The response was opposite, but weaker, in the high mortality scenarios. This asymmetric behaviour can be explained by the different ecological roles of large, omnivorous zooplankton, and small zooplankton, which in the model is strictly herbivorous. The response of small zooplankton depended on the antagonistic effects of mortality changes as well as the grazing pressure by large zooplankton. The results of this study provide a first insight on how the plankton ecosystem might respond if variations in fish populations were modelled explicitly.


2015 ◽  
Vol 72 (11) ◽  
pp. 1769-1775 ◽  
Author(s):  
Vincent Raoult ◽  
Troy F. Gaston ◽  
Jane E. Williamson

Despite the global distribution of sawsharks, little is known about their diets or their role in the marine biosphere. As species in higher trophic positions are generally considered to be more at risk to perturbations such as fishing, understanding their role in the food chain will enable better conservation and management strategies for these species. Two sawshark species (Pristiophorus cirratus, Pristiophorus nudipinnis) co-occur in waters off east Tasmania, Australia. This study determined the trophic positions of these sawsharks and whether they avoided competing with each other through resource partitioning. Isotopic analysis of muscle tissue revealed that P. cirratus and P. nudipinnis had significantly different trophic levels, with P. cirratus likely to have a diet of primary consumers and P. nudipinnis likely to have a piscivorous diet. Owing to their different isotopic signatures, it is also likely that the sawshark rostrum has multiple functions. Both species shifted to higher trophic levels during ontogeny. Maternal isotopic signatures were detectable in P. cirratus juveniles.


2021 ◽  
Vol 13 (2) ◽  
pp. 231
Author(s):  
John A. Gittings ◽  
Dionysios. E. Raitsos ◽  
Robert J. W. Brewin ◽  
Ibrahim Hoteit

Phytoplankton phenology and size structure are key ecological indicators that influence the survival and recruitment of higher trophic levels, marine food web structure, and biogeochemical cycling. For example, the presence of larger phytoplankton cells supports food chains that ultimately contribute to fisheries resources. Monitoring these indicators can thus provide important information to help understand the response of marine ecosystems to environmental change. In this study, we apply the phytoplankton size model of Gittings et al. (2019b) to 20-years of satellite-derived ocean colour observations in the northern and central Red Sea, and investigate interannual variability in phenology metrics for large phytoplankton (>2 µm in cell diameter). Large phytoplankton consistently bloom in the winter. However, the timing of bloom initiation and termination (in autumn and spring, respectively) varies between years. In the autumn/winter of 2002/2003, we detected a phytoplankton bloom, which initiated ~8 weeks earlier and lasted ~11 weeks longer than average. The event was linked with an eddy dipole in the central Red Sea, which increased nutrient availability and enhanced the growth of large phytoplankton. The earlier timing of food availability directly impacted the recruitment success of higher trophic levels, as represented by the maximum catch of two commercially important fisheries (Sardinella spp. and Teuthida) in the following year. The results of our analysis are essential for understanding trophic linkages between phytoplankton and fisheries and for marine management strategies in the Red Sea.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 864
Author(s):  
Xiaoming Tang ◽  
Shupei Tang ◽  
Xiaoyu Li ◽  
Dalai Menghe ◽  
Wuliji Bao ◽  
...  

Revealing the behavioral relationships between predators and their prey is fundamental in understanding the community structure and ecosystem functions of such animals. This study aimed at detecting the population size and activity patterns of Eurasian lynx (Lynx lynx) (along with its prey) by camera trapping monitoring from 2014 to 2017 at the Saihanwula nature reserve in central Inner Mongolia. The total effective trapping days were 29,892 and 20 lynx were identified from 343 trapping photos based on the inner side patterns of their forelimbs. The daily activity rhythms of the lynx overlapped with those of different prey in different seasons. The yearly activity pattern of the lynx was influenced by its main prey’s biology. In conclusion, this study reveals that the activity patterns of the top predator matched those of its prey in different time periods. Habitat management strategies promoting the restoration of prey communities would benefit the lynx in maintaining a stable community structure.


Sign in / Sign up

Export Citation Format

Share Document