scholarly journals The peroxisomal exportomer directly inhibits phosphoactivation of the pexophagy receptor Atg36 to suppress pexophagy in yeast

2021 ◽  
Author(s):  
Houqing Yu ◽  
Roarke A Kamber ◽  
Vladimir Denic

Autophagy receptor (or adaptor) proteins facilitate lysosomal destruction of various organelles in response to cellular stress, including nutrient deprivation. To what extent membrane-resident autophagy receptors also respond to organelle-restricted cues to induce selective autophagy remains poorly understood. We find that latent activation of the yeast pexophagy receptor Atg36 by the casein kinase Hrr25 in rich media is repressed by the ATPase activity of Pex1/6, the catalytic subunits of the exportomer AAA+ transmembrane complex enabling protein import into peroxisomes. Quantitative proteomics of purified Pex3, an obligate Atg36 co-receptor, support a model in which exportomer represses Atg36 without assistance from additional membrane factors. Indeed, we reconstitute inhibition of Atg36 phosphorylation in vitro using soluble Pex1/6 and define an N-terminal unstructured region of Atg36 that enables regulation by binding to Pex1. Our findings uncover a mechanism by which a compartment-specific AAA+ complex mediating organelle biogenesis and protein quality control staves off induction of selective autophagy.

2000 ◽  
Vol 279 (5) ◽  
pp. C1393-C1400 ◽  
Author(s):  
Janice Y. Grey ◽  
Michael K. Connor ◽  
Joseph W. Gordon ◽  
Masato Yano ◽  
Masataka Mori ◽  
...  

Mitochondrial biogenesis is accompanied by an increased expression of components of the protein import machinery, as well as increased import of proteins destined for the matrix. We evaluated the role of the outer membrane receptor Tom20 by varying its expression and measuring changes in the import of malate dehydrogenase (MDH) in differentiating C2C12 muscle cells. Cells transfected with Tom20 had levels that were twofold higher than in control cells. Labeling of cells followed by immunoprecipitation of MDH revealed equivalent increases in MDH import. This parallelism between import rate and Tom20 levels was also evident as a result of thyroid hormone treatment. Using antisense oligodeoxynucleotides, we inhibited Tom20 expression by 40%, resulting in 40–60% reductions in MDH import. In vitro assays also revealed that import into the matrix was more sensitive to Tom20 inhibition than import into the outer membrane. These data indicate a close relationship between induced changes in Tom20 and the import of a matrix protein, suggesting that Tom20 is involved in determining the kinetics of import. However, this relationship was dissociated during normal differentiation, since the expression of Tom20 remained relatively constant, whereas imported MDH increased 12-fold. Thus Tom20 is important in determining import during organelle biogenesis, but other mechanisms (e.g., intramitochondrial protein degradation or nuclear transcription) likely also play a role in establishing the final mitochondrial phenotype during normal muscle differentiation.


2021 ◽  
Author(s):  
Harihar Milaganur Mohan ◽  
Amit Pithadia ◽  
Hanna Trzeciakiewicz ◽  
Emily V. Crowley ◽  
Regina Pacitto ◽  
...  

AbstractThe brain expressed ubiquilins (UBQLNs) 1, 2 and 4 are a family of ubiquitin adaptor proteins that participate broadly in protein quality control (PQC) pathways, including the ubiquitin proteasome system (UPS). One family member, UBQLN2, has been implicated in numerous neurodegenerative diseases including ALS/FTD. UBQLN2 typically resides in the cytoplasm but in disease can translocate to the nucleus, as in Huntington’s disease where it promotes the clearance of mutant Huntingtin protein. How UBQLN2 translocates to the nucleus and clears aberrant nuclear proteins, however, is not well understood. In a mass spectrometry screen to discover UBQLN2 interactors, we identified a family of small (13 kDa), highly homologous uncharacterized proteins, RTL8, and confirmed the interaction between UBQLN2 and RTL8 both in vitro using recombinant proteins and in vivo using mouse brain tissue. Under endogenous and overexpressed conditions, RTL8 localizes to nucleoli. When co-expressed with UBQLN2, RTL8 promotes nuclear translocation of UBQLN2. UBQLN2 and RTL8 colocalize within ubiquitin-enriched subnuclear structures containing PQC components. The robust effect of RTL8 on the nuclear translocation and subnuclear localization of UBQLN2 does not extend to the other brain-expressed ubiquilins, UBQLN1 and UBQLN4. Moreover, compared to UBQLN1 and UBQLN4, UBQLN2 preferentially stabilizes RTL8 levels in human cell lines and in mouse brain, supporting functional heterogeneity among UBQLNs. As a novel UBQLN2 interactor that recruits UBQLN2 to specific nuclear compartments, RTL8 may regulate UBQLN2 function in nuclear protein quality control.


2021 ◽  
Vol 118 (6) ◽  
pp. e2017774118
Author(s):  
Samuel Rout ◽  
Silke Oeljeklaus ◽  
Abhijith Makki ◽  
Jan Tachezy ◽  
Bettina Warscheid ◽  
...  

Mitochondrial protein import requires outer membrane receptors that evolved independently in different lineages. Here we used quantitative proteomics and in vitro binding assays to investigate the substrate preferences of ATOM46 and ATOM69, the two mitochondrial import receptors of Trypanosoma brucei. The results show that ATOM46 prefers presequence-containing, hydrophilic proteins that lack transmembrane domains (TMDs), whereas ATOM69 prefers presequence-lacking, hydrophobic substrates that have TMDs. Thus, the ATOM46/yeast Tom20 and the ATOM69/yeast Tom70 pairs have similar substrate preferences. However, ATOM46 mainly uses electrostatic, and Tom20 hydrophobic, interactions for substrate binding. In vivo replacement of T. brucei ATOM46 by yeast Tom20 did not restore import. However, replacement of ATOM69 by the recently discovered Tom36 receptor of Trichomonas hydrogenosomes, while not allowing for growth, restored import of a large subset of trypanosomal proteins that lack TMDs. Thus, even though ATOM69 and Tom36 share the same domain structure and topology, they have different substrate preferences. The study establishes complementation experiments, combined with quantitative proteomics, as a highly versatile and sensitive method to compare in vivo preferences of protein import receptors. Moreover, it illustrates the role determinism and contingencies played in the evolution of mitochondrial protein import receptors.


2021 ◽  
pp. 088532822110134
Author(s):  
Sushant Singh ◽  
Udit Kumar ◽  
David Gittess ◽  
Tamil S Sakthivel ◽  
Balaashwin Babu ◽  
...  

Many studies have linked reactive oxygen species (ROS) to various diseases. Biomedical research has therefore sought a way to control and regulate ROS produced in biological systems. In recent years, cerium oxide nanoparticles (nanoceria, CNPs) have been pursued due to their ability to act as regenerative ROS scavengers. In particular, they are shown to have either superoxide dismutase (SOD) or catalase mimetic (CAT) potential depending on the ratio of Ce3+/Ce4+ valence states. Moreover, it has been demonstrated that SOD mimetic activity can be diminished by the presence of phosphate, which can be a problem given that many biological systems operate in a phosphate-rich environment. Herein, we report a CNP formulation with both SOD and catalase mimetic activity that is preserved in a phosphate-rich media. Characterization demonstrated a highly dispersed, stable solution of uniform-sized, spherical-elliptical shaped CNP of 12 ± 2 nm, as determined through dynamic light scattering, zeta potential, and transmission electron microscopy. Mixed valence states of Ce ions were observed via UV/Visible spectroscopy and XPS (Ce3+/Ce4+ > 1) (Ce3+∼ 62%). X-ray diffraction and XPS confirmed the presence of oxygen-deficient cerium oxide (CeO2-x) particles. Finally, the CNP demonstrated very good biocompatibility and efficient reduction of hydrogen peroxide under in-vitro conditions.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Dina Aweida ◽  
Shenhav Cohen

Protein degradation maintains cellular integrity by regulating virtually all biological processes, whereas impaired proteolysis perturbs protein quality control, and often leads to human disease. Two major proteolytic systems are responsible for protein breakdown in all cells: autophagy, which facilitates the loss of organelles, protein aggregates, and cell surface proteins; and the ubiquitin-proteasome system (UPS), which promotes degradation of mainly soluble proteins. Recent findings indicate that more complex protein structures, such as filamentous assemblies, which are not accessible to the catalytic core of the proteasome in vitro, can be efficiently degraded by this proteolytic machinery in systemic catabolic states in vivo. Mechanisms that loosen the filamentous structure seem to be activated first, hence increasing the accessibility of protein constituents to the UPS. In this review, we will discuss the mechanisms underlying the disassembly and loss of the intricate insoluble filamentous myofibrils, which are responsible for muscle contraction, and whose degradation by the UPS causes weakness and disability in aging and disease. Several lines of evidence indicate that myofibril breakdown occurs in a strictly ordered and controlled manner, and the function of AAA-ATPases is crucial for their disassembly and loss.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


1990 ◽  
Vol 10 (9) ◽  
pp. 4545-4554
Author(s):  
J M Sommer ◽  
J A Thissen ◽  
M Parsons ◽  
C C Wang

Glycosomes are microbody organelles found in kinetoplastida, where they serve to compartmentalize the enzymes of the glycolytic pathway. In order to identify the mechanism by which these enzymes are targeted to the glycosome, we have modified the in vitro import assay developed by Dovey et al. (Proc. Natl. Acad. Sci. USA 85:2598-2602, 1988). This assay measures the uptake of in vitro-translated Trypanosoma brucei glycosomal 3-phosphoglycerate kinase (gPGK) by purified glycosomes. Up to 50% of the total 35S-gPGK in the glycosomal fraction was resistant to extraction by 3 M urea or treatment with proteinase K (500 micrograms/ml). The glycosome-associated 35S-gPGK could be chemically cross-linked to the endogenous glycosomal proteins to form a sodium dodecyl sulfate-resistant complex, suggesting that it is close to the intraglycosomal protein matrix. Deoxycholate solubilized the glycosome and thereby rendered the glycosome-associated 35S-gPGK fully susceptible to proteinase K. However, the glycosome-associated 35S-gPGK was not digested by proteinase K in the presence of Triton X-100, which cannot dissolve the glycosomal protein core. The 35S-gPGK synthesized in vitro was able to bind directly to protein cores, where it became resistant to urea extraction and proteinase K digestion. However, the 35S-gPGK-protein core complex exhibited a much higher density than the 35S-gPGK-glycosome complex and was readily separable in sucrose gradients. Thus, in our in vitro import assay, the 35S-gPGK appeared to associate with intact glycosomes, possibly reflecting import of protein into the organelle. Complete denaturation of the 35S-gPGK in 8 M urea prior to the assay enhanced the efficiency of its association with glycosomes. Native gPGK did not compete with the association of in vitro-translated gPGK unless it was denatured. The assay exhibited time and temperature dependence, but it did not require externally added ATP and was not inhibited by the nonhydrolyzable analogs adenosine-5'-(beta,gamma-imido)-triphosphate and gamma-S-ATP. However, the presence of 20 to 30 microM ATP inside the glycosome may fulfill the requirement for protein import.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Shirin Doroudgar ◽  
Mirko Völkers ◽  
Donna J Thuerauf ◽  
Ashley Bumbar ◽  
Mohsin Khan ◽  
...  

The endoplasmic reticulum (ER) is essential for protein homeostasis, or proteostasis, which governs the balance of the proteome. In addition to secreted and membrane proteins, proteins bound for many other cellular locations are also made on ER-bound ribosomes, emphasizing the importance of protein quality and quantity control in the ER. Unlike cytosolic E3 ubiquitin ligases studied in the heart, synoviolin/Hrd1, which has not been studied in the heart, is an ER transmembrane E3 ubiquitin ligase, which we found to be upregulated upon protein misfolding in cardiac myocytes. Given the strategic location of synoviolin in the ER membrane, we addressed the hypothesis that synoviolin is critical for regulating the balance of the proteome, and accordingly, myocyte size. We showed that in vitro, adenovirus-mediated overexpression of synoviolin decreased cardiac myocyte size and protein synthesis, but unlike atrophy-related ubiquitin ligases, synoviolin did not increase global protein degradation. Furthermore, targeted gene therapy using adeno-associated virus 9 (AAV9) showed that overexpression of synoviolin in the left ventricle attenuated maladaptive cardiac hypertrophy and preserved cardiac function in mice subjected to trans-aortic constriction (AAV9-control TAC = 22.5 ± 6.2% decrease in EF vs. AAV9-synoviolin TAC at 6 weeks post TAC; P<0.001), and decreased mTOR activity. Since calcium is a major regulator of cardiac myocyte size, we examined the effects of synoviolin gain- or loss-of-function, using AAV9-synoviolin, or an miRNA designed to knock down synoviolin, respectively. While synoviolin gain-of-function did not affect calcium handling in isolated adult myocytes, synoviolin loss-of-function increased calcium transient amplitude (P<0.01), prolonged spark duration (P<0.001), and increased spark width (P<0.001). Spark frequency and amplitude were unaltered upon synoviolin gain- or loss-of-function. Whereas SR calcium load was unaltered by synoviolin loss-of-function, SERCA-mediated calcium removal was reduced (P<0.05). In conclusion, our studies suggest that in the heart, synoviolin is 1) a critical component of proteostasis, 2) a novel determinant of cardiac myocyte size, and 3) necessary for proper calcium handling.


1995 ◽  
Vol 128 (5) ◽  
pp. 721-736 ◽  
Author(s):  
M A Powers ◽  
C Macaulay ◽  
F R Masiarz ◽  
D J Forbes

Xenopus egg extracts provide a powerful system for in vitro reconstitution of nuclei and analysis of nuclear transport. Such cell-free extracts contain three major N-acetylglucosaminylated proteins: p200, p97, and p60. Both p200 and p60 have been found to be components of the nuclear pore. Here, the role of p97 has been investigated. Xenopus p97 was isolated and antisera were raised and affinity purified. Immunolocalization experiments indicate that p97 is present in a punctate pattern on the nuclear envelope and also in the nuclear interior. Peptide sequence analysis reveals that p97 contains a GLFG motif which defines a family of yeast nuclear pore proteins, as well as a peptide that is identical at 11/15 amino acids to a specific member of the GLFG family, NUP116. An additional peptide is highly homologous to a second sequence found in NUP116 and other members of the yeast GLFG family. A monoclonal antibody to the GLFG domain cross-reacts with a major Xenopus protein of 97 kD and polyclonal antiserum to p97 recognizes the yeast GLFG nucleoporin family. The p97 antiserum was used to immunodeplete Xenopus egg cytosol and p97-deficient nuclei were reconstituted. The p97-depleted nuclei remained largely competent for nuclear protein import. However, in contrast to control nuclei, nuclei deficient in p97 fail to grow in size over time and do not replicate their chromosomal DNA. ssDNA replication in such extracts remains unaffected. Addition of the N-acetylglucosaminylated nuclear proteins of Xenopus or rat reverses these replication and growth defects. The possible role(s) of p97 in these nuclear functions is discussed.


Sign in / Sign up

Export Citation Format

Share Document