scholarly journals Specific N-glycans regulate an extracellular adhesion complex during somatosensory dendrite patterning

2021 ◽  
Author(s):  
Hannes E Bülow ◽  
Maisha Rahman ◽  
Nelson J. Ramirez-Suarez ◽  
Carlos A Diaz-Balzac

N-glycans are molecularly diverse sugars borne by over 70% of proteins transiting the secretory pathway and have been implicated in protein folding, stability, and localization. Mutations in genes important for N-glycosylation result in congenital disorders of glycosylation that are often associated with intellectual disability. Here, we show that structurally distinct N-glycans regulate the activity of an extracellular protein complex involved in patterning of somatosensory dendrites in Caenorhabditis elegans. Specifically, aman-2/Golgi alpha-mannosidase II, a conserved key enzyme in the biosynthesis of specific N-glycans regulates the activity of the Menorin adhesion complex without obviously affecting protein stability and localization of its components. AMAN-2 functions cell-autonomously to ensure decoration of the neuronal transmembrane receptor DMA-1/LRR-TM with high-mannose/hybrid N-glycans. Moreover, distinct types of N-glycans on specific N-glycosylation sites regulate the DMA-1/LRR-TM receptor, which together with three other extracellular proteins forms the Menorin adhesion complex. In summary, specific N-glycan structures regulate dendrite patterning by coordinating the activity of an extracellular adhesion complex suggesting that the molecular diversity of N-glycans can contribute to developmental specificity in the nervous system.

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3275
Author(s):  
Zinia D’Souza ◽  
Farhana Taher Sumya ◽  
Amrita Khakurel ◽  
Vladimir Lupashin

The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.


2002 ◽  
Vol 277 (51) ◽  
pp. 49143-49157 ◽  
Author(s):  
John F. Cipollo ◽  
Catherine E. Costello ◽  
Carlos B. Hirschberg

We report the fine structure of a nearly contiguous series ofN-glycans from the soil nematodeCaenorhabditis elegans.Five major classes are revealed including high mannose, mammalian-type complex, hybrid, fuco-pausimannosidic (five mannose residues or fewer substituted with fucose), and phosphocholine oligosaccharides. The high mannose, complex, and hybridN-glycan series show a high degree of conservation with the mammalian biosynthetic pathways. The fuco-pausimannosidic glycans contain a novel terminal fucose substitution of mannose. The phosphocholine oligosaccharides are high mannose type and are multiply substituted with phosphocholine. Although phosphocholine oligosaccharides are known immunomodulators in human nematode and trematode infections,C. elegansis unique as a non-parasitic nematode containing phosphocholineN-glycans. Therefore, studies inC. elegansshould aid in the elucidation of the biosynthetic pathway(s) of this class of biomedically relevant compounds. Results presented here show thatC. eleganshas a functional orthologue for nearly every known enzyme found to be deficient in congenital disorders of glycosylation types I and II. This nematode is well characterized genetically and developmentally. Therefore, elucidation of itsN-glycome, as shown in this report, may place it among the useful systems used to investigate human disorders of glycoconjugate synthesis such as the congenital disorders of glycosylation syndromes.


Author(s):  
Patryk Lipiński ◽  
Joanna Cielecka-Kuszyk ◽  
Elżbieta Czarnowska ◽  
Anna Bogdańska ◽  
Piotr Socha ◽  
...  

Author(s):  
Alexandre Raynor ◽  
Catherine Vincent-Delorme ◽  
Anne-Sophie Alaix ◽  
Sophie Cholet ◽  
Thierry Dupré ◽  
...  

2017 ◽  
Vol 21 ◽  
pp. e139-e140
Author(s):  
R. Calvo Medina ◽  
A. Calvo-Cillan ◽  
M. Sanchez Muñoz ◽  
M. mantecon Barranco ◽  
M.A. Aviles-tirado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document