scholarly journals Focal adhesion membrane is dotted with protein islands and partitioned for molecular hop diffusion

2021 ◽  
Author(s):  
Takahiro K. Fujiwara ◽  
Shinji Takeuchi ◽  
Ziya Kalay ◽  
Yosuke Nagai ◽  
Taka A. Tsunoyama ◽  
...  

Using the ultrafast camera system and new theories for hop diffusion described in the companion paper, we for the first time demonstrated that membrane molecules undergo hop diffusion among the compartments in the bulk basal plasma membrane (PM), with virtually the same compartment sizes (108 nm) as those in the bulk apical PM and the same dwell lifetimes within a compartment (10 and 24 ms for the phospholipid and transferrin receptor [TfR], respectively), suggesting that the basic structures and molecular dynamics are very similar in the bulk regions of the apical and basal PMs. Ultrafast PALM and single-molecule imaging revealed that the focal adhesion (FA) is mostly a fluid membrane, partitioned into ~74-nm compartments where TfR and β3 integrin undergo hop diffusion, and that the FA membrane is sparsely dotted with 51-nm diameter paxillin islands, where many other FA proteins probably assemble (compartmentalized archipelago model). β3 integrin intermittently associates with the paxillin islands, dynamically linking them to the extracellular matrix.

Author(s):  
Javad Golji ◽  
Mohammad R. K. Mofrad

Focal adhesions are formed as a molecular glue linking cytoskeletal actin filaments to the extracellular matrix (ECM). They are formed at the site of mechanical stimulation (1) and involve and initial recruitment of talin and vinculin to ECM bound integrin molecules at the site of external stimulation. Talin recruitment and its force-induced activation and subsequent interaction with vinculin have been extensively studied (2–4). Vinculin is natively in an auto-inhibited conformation and its activation involves removal of a steric hindrance preventing binding of Vt with actin (5) (Figure 1). Several hypotheses have been put forth regarding vinculin activation and its subsequent interaction with actin: 1) vinculin activation requires only interaction with talin at domain 1 (D1) (6), 2) a simultaneous interaction with both actin and talin is necessary to achieve vinculin activation (7), 3) once activated vinculin interacts with actin via an electrostatic interaction between Vt and two regions on F-actin (5). Each of these hypotheses is evaluated through molecular dynamics simulation and analysis.


Cytoskeleton ◽  
2013 ◽  
Vol 70 (3) ◽  
pp. 161-177 ◽  
Author(s):  
Akihiro C. E. Shibata ◽  
Limin H. Chen ◽  
Rie Nagai ◽  
Fumiyoshi Ishidate ◽  
Rahul Chadda ◽  
...  

Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Justin Spiriti ◽  
Chung F. Wong

Most early-stage drug discovery projects focus on equilibrium binding affinity to the target alongside selectivity and other pharmaceutical properties. Since many approved drugs have nonequilibrium binding characteristics, there has been increasing interest in optimizing binding kinetics early in the drug discovery process. As focal adhesion kinase (FAK) is an important drug target, we examine whether steered molecular dynamics (SMD) can be useful for identifying drug candidates with the desired drug-binding kinetics. In simulating the dissociation of 14 ligands from FAK, we find an empirical power–law relationship between the simulated time needed for ligand unbinding and the experimental rate constant for dissociation, with a strong correlation depending on the SMD force used. To improve predictions, we further develop regression models connecting experimental dissociation rate with various structural and energetic quantities derived from the simulations. These models can be used to predict dissociation rates from FAK for related compounds.


2021 ◽  
Vol 22 (3) ◽  
pp. 1400
Author(s):  
Ciresthel Bello-Rios ◽  
Sarita Montaño ◽  
Olga Lilia Garibay-Cerdenares ◽  
Lilian Esmeralda Araujo-Arcos ◽  
Marco Antonio Leyva-Vázquez ◽  
...  

The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 481 ◽  
Author(s):  
Chen ◽  
Lin ◽  
Xie ◽  
Zhong ◽  
Zhang ◽  
...  

The damage caused by Bradysia odoriphaga is the main factor threatening the production of vegetables in the Liliaceae family. However, few genetic studies of B. odoriphaga have been conducted because of a lack of genomic resources. Many long-read sequencing technologies have been developed in the last decade; therefore, in this study, the transcriptome including all development stages of B. odoriphaga was sequenced for the first time by Pacific single-molecule long-read sequencing. Here, 39,129 isoforms were generated, and 35,645 were found to have annotation results when checked against sequences available in different databases. Overall, 18,473 isoforms were distributed in 25 various Clusters of Orthologous Groups, and 11,880 isoforms were categorized into 60 functional groups that belonged to the three main Gene Ontology classifications. Moreover, 30,610 isoforms were assigned into 44 functional categories belonging to six main Kyoto Encyclopedia of Genes and Genomes functional categories. Coding DNA sequence (CDS) prediction showed that 36,419 out of 39,129 isoforms were predicted to have CDS, and 4319 simple sequence repeats were detected in total. Finally, 266 insecticide resistance and metabolism-related isoforms were identified as candidate genes for further investigation of insecticide resistance and metabolism in B. odoriphaga.


2018 ◽  
Vol 32 (18) ◽  
pp. 1840001 ◽  
Author(s):  
Ming Li ◽  
Zhong-Can Ou-Yang ◽  
Yao-Gen Shu

Kinesin is a two-headed linear motor for intracellular transport. It can walk a long distance in a hand-over-hand manner along the track before detaching (i.e., high processivity), and it consumes one ATP molecule for each step (i.e., tight mechanochemical coupling). The mechanisms of the coordination of its two heads and the mechanochemical coupling are the central issues of numerous researches. A few advances have been made in recent decades, thanks to the development of single-molecule technologies and molecular dynamics simulations. In this paper, we review some progress of the studies on the kinematics, energetics, coordination mechanism, mechanochemical mechanism of kinesin. We also present a personal perspective on the future studies of kinesin.


Sign in / Sign up

Export Citation Format

Share Document