scholarly journals Trachymyrmex septentrionalis ant microbiome assembly is unique to individual colonies and castes.

2021 ◽  
Author(s):  
Emily A Green ◽  
Jonathan L Klassen

Within social insect colonies, microbiomes often differ between castes due to their different functional roles, and between colony locations. Trachymyrmex septentrionalis fungus-growing ants form colonies throughout the eastern USA and Northern Mexico that include workers, female and male alates (unmated reproductive castes), larvae, and pupae. How T. septentrionalis microbiomes vary across this geographic range and between castes is unknown. Our sampling of individual ants from colonies across the Eastern USA revealed a conserved core T. septentrionalis worker ant microbiome, and that worker ant microbiomes are more conserved within colonies than between them. A deeper sampling of individual ants from two colonies that included all available castes (pupae, larvae, workers, female and male alates), from both before and after adaptation to controlled laboratory conditions, revealed that ant microbiomes from each colony, caste, and rearing condition were typically conserved within but not between each sampling category. Tenericute bacterial symbionts were especially abundant in these ant microbiomes and varied widely in abundance between sampling categories. This study demonstrates how individual insect colonies primarily drive the composition of their microbiomes, and that these microbiomes are further modified by developmental differences between insect castes and the different environmental conditions experienced by each colony.

2019 ◽  
Vol 20 (22) ◽  
pp. 5610 ◽  
Author(s):  
Phillip J. McCown ◽  
Matthew C. Wang ◽  
Luc Jaeger ◽  
Jessica A. Brown

Human metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an abundant nuclear-localized long noncoding RNA (lncRNA) that has significant roles in cancer. While the interacting partners and evolutionary sequence conservation of MALAT1 have been examined, much of the structure of MALAT1 is unknown. Here, we propose a hypothetical secondary structural model for 8425 nucleotides of human MALAT1 using three experimental datasets that probed RNA structures in vitro and in various human cell lines. Our model indicates that approximately half of human MALAT1 is structured, forming 194 helices, 13 pseudoknots, five structured tetraloops, nine structured internal loops, and 13 intramolecular long-range interactions that give rise to several multiway junctions. Evolutionary conservation and covariation analyses support 153 of 194 helices in 51 mammalian MALAT1 homologs and 42 of 194 helices in 53 vertebrate MALAT1 homologs, thereby identifying an evolutionarily conserved core that likely has important functional roles in mammals and vertebrates. Data mining revealed that RNA modifications, somatic cancer-associated mutations, and single-nucleotide polymorphisms may induce structural rearrangements that sequester or expose binding sites for several cancer-associated microRNAs. Our findings reveal new mechanistic leads into the roles of MALAT1 by identifying several intriguing structure–function relationships in which the dynamic structure of MALAT1 underlies its biological functions.


2003 ◽  
Vol 23 (9) ◽  
pp. 3329-3338 ◽  
Author(s):  
Qian Tan ◽  
Meredith H. Prysak ◽  
Nancy A. Woychik

ABSTRACT We have identified a conditional mutation in the shared Rpb6 subunit, assembled in RNA polymerases I, II, and III, that illuminated a new role that is independent of its assembly function. RNA polymerase II and III activities were significantly reduced in mutant cells before and after the shift to nonpermissive temperature. In contrast, RNA polymerase I was marginally affected. Although the Rpb6 mutant strain contained two mutations (P75S and Q100R), the majority of growth and transcription defects originated from substitution of an amino acid nearly identical in all eukaryotic counterparts as well as bacterial ω subunits (Q100R). Purification of mutant RNA polymerase II revealed that two subunits, Rpb4 and Rpb7, are selectively lost in mutant cells. Rpb4 and Rpb7 are present at substoichiometric levels, form a dissociable subcomplex, are required for RNA polymerase II activity at high temperatures, and have been implicated in the regulation of enzyme activity. Interaction experiments support a direct association between the Rpb6 and Rpb4 subunits, indicating that Rpb6 is one point of contact between the Rpb4/Rpb7 subcomplex and RNA polymerase II. The association of Rpb4/Rpb7 with Rpb6 suggests that analogous subunits of each RNA polymerase impart class-specific functions through a conserved core subunit.


1994 ◽  
Vol 51 (8) ◽  
pp. 1774-1779 ◽  
Author(s):  
Jin-Hua Cheng ◽  
Ernest S. Chang

The effects of eyestalk ablation, regeneration, and rearing condition on the size of new cuticles before and after expansion were studied in juvenile Homarus americanus. Both eyestalk-ablated and intact lobster grew larger in large spaces than in small spaces. In contrast, regeneration reduced molt increment. Despite large differences in molt increment (percentage of size increase during a molt) among experimental groups, the percentage of postmolt size increase that could be accounted for by unfolding of the new cuticle was large and constant in each group. In addition, transferring freshly molted lobster to dilute seawater did not produce any further size increase but instead caused cuticle breakage in some animals. We conclude that molt increment in lobster is determined by regulating the size of the cuticle before ecdysis. The size of the postmolt cuticle is primarily a result of unfolding of the new, previously folded cuticle.


1982 ◽  
Vol 98 (1) ◽  
pp. 317-327
Author(s):  
CHARLES D. DERBY ◽  
JELLE ATEMA

The behaviour of lobsters preying on live mussels (Mytilus edulis) was observed before and after chemosensory or chemosensory-mechanosensory deafferentation of different sensory appendages. Deafferentation of the antennules, leg tips, or maxillipeds (but not the carapace or proximal leg segments) interfered with feeding performance by causing an increase in the time necessary to crush a mussel after search initiation. In addition, deafferentation of the leg tips or the maxillipeds caused a decline in number of mussels crushed but for different reasons: leg-treated lobsters walked over the mussels without picking them up, whereas maxilliped-treated lobsters grasped the mussels as usual but either did not crush or did not eat them as readily as did normal lobsters. Deafferentation of leg chemoreceptors resulted in the same behavioural deficiencies as deafferentation of leg chemo-and mechanoreceptors, demonstrating that it is the leg chemoreceptors that are essential in releasing this grasping response. Chemoreceptors on different appendages of lobsters therefore fulfill different functional roles in their feeding behaviour.


Author(s):  
Charlotte B. Francoeur ◽  
Daniel S. May ◽  
Margaret W. Thairu ◽  
Don Q. Hoang ◽  
Olivia Panthofer ◽  
...  

Within animal associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants’ fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus Leucoagaricus spp. converting plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus Escovopsis. Here, we examine the potential role of Burkholderia spp. that occur within ant fungus gardens in inhibiting Escovopsis. We isolated members of the bacterial genera Burkholderia spp. and Paraburkholderia spp. from 50% of the 52 colonies sampled, indicating that family Burkholderiaceae are common fungus garden inhabitants of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one Escovopsis strain with a zone of inhibition greater than 1 cm. Genomic assessment of fungus-garden associated Burkholderiaceae indicated that isolates with strong inhibition all belonged to the genus Burkholderia and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed these compounds as responsible for antifungal activity that inhibit Escovopsis but, at equivalent concentrations, not Leucoagaricus spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of the fungus-growing ant colony. IMPORTANCE Many organisms partner with microbes to defend themselves against parasites and pathogens. Fungus-growing ants must protect Leucoagaricus spp., the fungal mutualist that provides sustenance for the ants, from a specialized fungal parasite, Escovopsis spp. The ants take multiple approaches, including weeding their fungus gardens to remove Escovopsis spores, as well as harboring Pseudonocardia that produce antifungals that inhibit Escovopsis. In addition, a genus of bacteria commonly found in fungus gardens, Burkholderia spp., is known to produce secondary metabolites that inhibit Escovopsis spp. In this study, we isolated Burkholderia spp. from fungus-growing ants, assessed the isolates’ ability to inhibit Escovopsis spp., and identified two compounds responsible for inhibition. Our findings suggest that Burkholderia spp. are often found in fungus gardens, adding another possible mechanism within the fungus-growing ant system to suppress the growth of the specialized parasite Escovopsis.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Chuan Wang ◽  
Manabu Niimi ◽  
Shuji Kitajima ◽  
Fumikazu Matsuhisa ◽  
Haizhao Yan ◽  
...  

Abstract Background Endothelial lipase (EL) plays an important role in lipoprotein metabolism and atherosclerosis. To study the functional roles of EL, we recently generated transgenic (Tg) rabbits and reported that increased hepatic expression of EL in male Tg rabbits significantly reduced diet-induced hypercholesterolemia compared with non-Tg controls. This gender difference suggests that sex hormones may mediate EL functions thereby influencing lipoprotein metabolism. To examine this hypothesis, we compared the effects of orchiectomy and ovariectomy on plasma lipids and diet-induced atherosclerosis in both Tg and non-Tg rabbits. Methods Male rabbits were under orchiectomy whereas female rabbits were under ovariectomy. We compared plasma lipids, lipoproteins, and apolipoproteins of rabbits before and after surgery in each group fed either a chow diet or cholesterol-rich diet. Results On a chow diet, both male and female Tg rabbits showed lower plasma lipids than non-Tg counterparts and this lipid-lowering effect of EL was not affected by either orchiectomy in male or ovariectomy in female Tg rabbits. On a cholesterol diet; however, male Tg rabbits but not female Tg rabbits showed significant resistance to diet-induced hypercholesterolemia and atherosclerosis. The EL-mediated atheroprotective effect was eliminated after orchiectomy in male Tg rabbits. Female Tg rabbits showed similar levels of total cholesterol and lesion size of atherosclerosis compared with non-Tg rabbits and ovariectomy did not affect diet-induced hypercholesterolemia or atherosclerosis. Conclusion These results suggest that increased EL protects against diet-induced hypercholesterolemia and atherosclerosis. The beneficial effect of EL was dependent upon the presence of androgenic hormones.


2021 ◽  
Author(s):  
Charlotte B. Francoeur ◽  
Daniel S. May ◽  
Margaret W. Thairu ◽  
Don Q. Hoang ◽  
Olivia Panthofer ◽  
...  

ABSTRACTWithin animal associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants’ fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus Leucoagaricus spp. converting plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus Escovopsis. Here, we examine the potential role of Burkholderia spp. that occur within ant fungus gardens in inhibiting Escovopsis. We isolated members of the bacterial genera Burkholderia spp. and Paraburkholderia spp. from 50% of the 52 colonies sampled, indicating that the family Burkholderiaceae are common fungus garden inhabitants of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one Escovopsis strain with a zone of inhibition greater than 1 cm. Genomic assessment of Burkholderiaceae isolates indicated that isolates with strong inhibition all belonged to the genus Burkholderia and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed these compounds as responsible for antifungal activity that inhibit Escovopsis but, at low concentrations, not Leucoagaricus spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of the fungus-farming ant colony.IMPORTANCEMany organisms partner with microbes to defend themselves against parasites and pathogens. Fungus-growing ants must protect Leucoagaricus spp., the fungal mutualist that provides sustenance for the ants, from a specialized fungal parasite, Escovopsis spp. The ants take multiple approaches, including weeding their fungus gardens to remove Escovopsis spores, as well as harboring Pseudonocardia that produce antifungals that inhibit Escovopsis. In addition, a genus of bacteria commonly found in fungus gardens, Burkholderia spp., is known to produce secondary metabolites that inhibit Escovopsis spp. In this study, we isolated Burkholderia spp. from fungus-growing ants, assessed the isolates’ ability to inhibit Escovopsis spp., and identified two compounds responsible for inhibition. Our findings suggest that Burkholderia spp. are often found in fungus gardens, adding another possible mechanism within the fungus-growing ant system to suppress the growth of the specialized parasite Escovopsis.


MAKSIMUM ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 34
Author(s):  
Siti Barokah ◽  
Ayu Noviani Hanum

The purpose of this study was to analyze the perception and development of Micro, Small and Medium Enterprises between before and after obtaining the financing mudharabah of BPRS Binama Semarang City, viewed from the side of working capital, profits, employment and profits.Data that used is simple random sampling on the BPRS Binama. Of the population of 100 respondents, 50 respondents of samples used. Type of test used is a validity test, reliability test, and the sign rank test Wilxocon. Experiments were done using SPSS PASW 18 program.Based on research results of the descriptive analysis of the overall submission process until the liquefaction process, customers expressed easily in obtaining financing. From the test results the insignia wilxocon there is developmental differences the UMKM between before and after financing of mudharobah with details of the amount of working capital increased by 165%, turnover increased by 79%, total employment increased 33% and profits by 82%. Keywords: Perception, Financing Mudharabah, UMKM


Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


Author(s):  
R. F. Bils ◽  
W. F. Diller ◽  
F. Huth

Phosgene still plays an important role as a toxic substance in the chemical industry. Thiess (1968) recently reported observations on numerous cases of phosgene poisoning. A serious difficulty in the clinical handling of phosgene poisoning cases is a relatively long latent period, up to 12 hours, with no obvious signs of severity. At about 12 hours heavy lung edema appears suddenly, however changes can be seen in routine X-rays taken after only a few hours' exposure (Diller et al., 1969). This study was undertaken to correlate these early changes seen by the roengenologist with morphological alterations in the lungs seen in the'light and electron microscopes.Forty-two adult male and female Beagle dogs were selected for these exposure experiments. Treated animals were exposed to 94.5-107-5 ppm phosgene for 10 min. in a 15 m3 chamber. Roentgenograms were made of the thorax of each animal before and after exposure, up to 24 hrs.


Sign in / Sign up

Export Citation Format

Share Document