scholarly journals Three-dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array

2021 ◽  
Author(s):  
Zhijie Dong ◽  
Jihun Kim ◽  
Chengwu Huang ◽  
Matthew R. Lowerison ◽  
Shigao Chen ◽  
...  

Objective: To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement: The proposed method paves the way for clinical translation of 3D-SWE based on the 2D RCA, providing a low-cost and high volume-rate solution that is compatible with existing clinical systems. Introduction: SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame-rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume-rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods: A 3D SWE method using a 2D RCA array was developed with a volume-rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms. Results: 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for both homogeneous and heterogeneous phantoms with inclusions. Conclusion: The high volume-rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.

2021 ◽  
Vol 9 ◽  
Author(s):  
Javier Brum ◽  
Nicolás Benech ◽  
Thomas Gallot ◽  
Carlos Negreira

Shear wave elastography (SWE) relies on the generation and tracking of coherent shear waves to image the tissue's shear elasticity. Recent technological developments have allowed SWE to be implemented in commercial ultrasound and magnetic resonance imaging systems, quickly becoming a new imaging modality in medicine and biology. However, coherent shear wave tracking sets a limitation to SWE because it either requires ultrafast frame rates (of up to 20 kHz), or alternatively, a phase-lock synchronization between shear wave-source and imaging device. Moreover, there are many applications where coherent shear wave tracking is not possible because scattered waves from tissue’s inhomogeneities, waves coming from muscular activity, heart beating or external vibrations interfere with the coherent shear wave. To overcome these limitations, several authors developed an alternative approach to extract the shear elasticity of tissues from a complex elastic wavefield. To control the wavefield, this approach relies on the analogy between time reversal and seismic noise cross-correlation. By cross-correlating the elastic field at different positions, which can be interpreted as a time reversal experiment performed in the computer, shear waves are virtually focused on any point of the imaging plane. Then, different independent methods can be used to image the shear elasticity, for example, tracking the coherent shear wave as it focuses, measuring the focus size or simply evaluating the amplitude at the focusing point. The main advantage of this approach is its compatibility with low imaging rates modalities, which has led to innovative developments and new challenges in the field of multi-modality elastography. The goal of this short review is to cover the major developments in wave-physics involving shear elasticity imaging using a complex elastic wavefield and its latest applications including slow imaging rate modalities and passive shear elasticity imaging based on physiological noise correlation.


2014 ◽  
Vol 50 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Yasuhide Yoshitake ◽  
Yohei Takai ◽  
Hiroaki Kanehisa ◽  
Minoru Shinohara

2018 ◽  
Vol 46 (5) ◽  
pp. 489-501 ◽  
Author(s):  
Edgar Hernandez-Andrade ◽  
Eli Maymon ◽  
Suchaya Luewan ◽  
Gaurav Bhatti ◽  
Mohammad Mehrmohammadi ◽  
...  

AbstractObjective:To determine whether a soft cervix identified by shear-wave elastography between 18 and 24 weeks of gestation is associated with increased frequency of spontaneous preterm delivery (sPTD).Materials and methods:This prospective cohort study included 628 consecutive women with a singleton pregnancy. Cervical length (mm) and softness [shear-wave speed: (SWS) meters per second (m/s)] of the internal cervical os were measured at 18–24 weeks of gestation. Frequency of sPTD <37 (sPTD<37) and <34 (sPTD<34) weeks of gestation was compared among women with and without a short (≤25 mm) and/or a soft cervix (SWS <25thpercentile).Results:There were 31/628 (4.9%) sPTD<37 and 12/628 (1.9%) sPTD<34 deliveries. The combination of a soft and a short cervix increased the risk of sPTD<37 by 18-fold [relative risk (RR) 18.0 (95% confidence interval [CI], 7.7–43.9); P<0.0001] and the risk of sPTD<34 by 120-fold [RR 120.0 (95% CI 12.3–1009.9); P<0.0001] compared to women with normal cervical length. A soft-only cervix increased the risk of sPTD<37 by 4.5-fold [RR 4.5 (95% CI 2.1–9.8); P=0.0002] and of sPTD<34 by 21-fold [RR 21.0 (95% CI 2.6–169.3); P=0.0003] compared to a non-soft cervix.Conclusions:A soft cervix at 18–24 weeks of gestation increases the risk of sPTD <37 and <34 weeks of gestation independently of cervical length.


2017 ◽  
Vol 03 (04) ◽  
pp. E137-E149 ◽  
Author(s):  
Christoph Dietrich ◽  
Richard Barr ◽  
André Farrokh ◽  
Manjiri Dighe ◽  
Michael Hocke ◽  
...  

AbstractTissue stiffness assessed by palpation for diagnosing pathology has been used for thousands of years. Ultrasound elastography has been developed more recently to display similar information on tissue stiffness as an image. There are two main types of ultrasound elastography, strain and shear wave. Strain elastography is a qualitative technique and provides information on the relative stiffness between one tissue and another. Shear wave elastography is a quantitative method and provides an estimated value of the tissue stiffness that can be expressed in either the shear wave speed through the tissues in meters/second, or converted to the Young’s modulus making some assumptions and expressed in kPa. Each technique has its advantages and disadvantages and they are often complimentary to each other in clinical practice. This article reviews the principles, technique, and interpretation of strain elastography in various organs. It describes how to optimize technique, while pitfalls and artifacts are also discussed.


This paper is the first in a series of articles describing the refraction and propagation of infinitesimal disturbances in a 'coarse grained’ inhomogeneous anisotropic material which is fused to an isotropic substrate. Here, the basic constitutive law for the material is motivated by applications to the non-destructive evaluation of austenitic steel welds, although it is clear that the phenomena described and the mathematical analysis used is also of interest in geophysics, the study of composite materials and several other areas of continuum mechanics. This work is concerned with the refraction of a horizontally polarized shear wave source at the fusion interface between a homogeneous isotropic material and transversely isotropic material. The latter is inhomogeneous by virtue of the fact that the zonal axis or axis of symmetry of the crystals varies in direction with the distance from the interface. The mathematical boundary-value problem is solved exactly, and, in the highfrequency limit, a uniform asymptotic expansion for the displacement vector is found. It is shown that in this limit, and for a wide range of material constants, the refracted energy which penetrates certain regions of the ‘weld material’ is totally internally reflected. This conclusion is highly significant in the design of inspection procedures for structurally important welds.


2021 ◽  
Vol 11 (20) ◽  
pp. 9391
Author(s):  
Emma Harris ◽  
Ruchi Sinnatamby ◽  
Elizabeth O’Flynn ◽  
Anna M. Kirby ◽  
Jeffrey C. Bamber

Quantitative measures of radiation-induced breast stiffness are required to support clinical studies of novel breast radiotherapy regimens and exploration of personalised therapy, however, variation between shear-wave elastography (SWE) machines may limit the usefulness of shear-wave speed (cs) for this purpose. Mean cs measured in four healthy volunteers’ breasts and a phantom using 2D-SWE machines Acuson S2000 (Siemens Medical Solutions) and Aixplorer (Supersonic Imagine) were compared. Shear-wave speed was measured in the skin region, subcutaneous adipose tissue and parenchyma. cs estimates were on average 2.3% greater when using the Aixplorer compared to S2000 in vitro. In vivo, cs estimates were on average 43.7%, 36.3% and 49.9% significantly greater (p << 0.01) when using the Aixplorer compared to S2000, for skin region, subcutaneous adipose tissue and parenchyma, respectively. In conclusion, despite relatively small differences between machines observed in vitro, large differences in absolute measures of shear wave speed measured were observed in vivo, which may prevent pooling of cross-machine data in clinical studies of the breast.


2020 ◽  
Vol 65 (21) ◽  
pp. 215009
Author(s):  
Chengwu Huang ◽  
Pengfei Song ◽  
Daniel C Mellema ◽  
Ping Gong ◽  
U-Wai Lok ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Kyeonga Kim ◽  
Jieun Lee ◽  
Jaebeom So ◽  
Yong-seok Jang ◽  
Mingyu Jung ◽  
...  

Given the broad overlap of normal and abnormal liver tissue in the subjective evaluation of the liver in conventional B-mode ultrasonography, there is a need for a non-invasive and quantitative method for the diagnosis of liver disease. Novel two-dimensional shear-wave elastography (2-D SWE) can measure tissue stiffness by propagation of the shear wave induced using acoustic radiation force impulse in real time. To the best of our knowledge, two-dimensional shear-wave measurement of the liver in cats has not been reported to date. This study assessed the feasibility, reliability, normal values, and related influencing factors of 2-D SWE for assessment of the feline liver without anesthesia and breath-holding. Two-dimensional shear-wave ultrasonography was performed by two evaluators at the right and left sides of the liver. Twenty-nine client-owned clinically healthy adult cats were included. The means and standard deviations for the shear-wave speed and stiffness in the right liver were 1.52 ± 0.13 m/s and 6.94 ± 1.26 kPa, respectively, and those for the left liver were 1.61 ± 0.15 m/s and 7.90 ± 1.47 kPa, respectively. Shear-wave speed (P = 0.005) and stiffness (P = 0.002) were significantly lower in the right liver when compared to the left. The intraclass correlation value for liver stiffness was 0.835 and 0.901 for the right and left liver, respectively, indicating high interobserver agreement. Age, weight, body condition score (BCS), gabapentin administration, and measurement depths were not significantly correlated with liver stiffness or elastography measurements (P &gt; 0.05). Our findings suggest that 2-D SWE measurements of the liver are not influenced significantly by age, weight, or BCS and can be reliably performed without anesthesia and breath-holding in cats. The values determined here can help form the basis for reference elastography values for evaluation of the feline liver.


Sign in / Sign up

Export Citation Format

Share Document