scholarly journals Design of D-amino acids SARS-CoV-2 Main protease inhibitors using the cationic peptide from rattlesnake venom as a scaffold

2021 ◽  
Author(s):  
Raphael J. Eberle ◽  
Ian Gering ◽  
Markus Tusche ◽  
Philipp N. Ostermann ◽  
Lisa Mueller ◽  
...  

The C30 Endopeptidase (3C-like protease; 3CLpro) is essential for the life cycle of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) since it plays a pivotal role in viral replication and transcription and is hence a promising drug target. Molecules isolated from animals, insects, plants or microorganisms can serve as a scaffold for the design of novel biopharmaceutical products. Crotamine, a small cationic peptide from the venom of the rattlesnake Crotalus durissus terrificus has been the focus of many studies since it exhibits activities such as analgesic, in vitro antibacterial and hemolytic activities. The crotamine derivative L-peptides (L-CDP) that inhibit the 3CL protease in the low μM range were examined since they are susceptible to proteolytic degradation; we explored the utility of their D-enantiomers form. Comparative uptake inhibition analysis showed D-CDP as a promising prototype for a D-peptide-based drug. We also found that the D-peptides can impair SARS-CoV-2 replication in vivo, probably targeting the viral protease 3CLpro.

2020 ◽  
Author(s):  
Abhisek Mishra ◽  
Sobha Chnadra Rath ◽  
Iswar Baitharu ◽  
Bhawani Prasad Bag

The on-going pandemic COVID-19 has emerged as a major health threat across the globe. At present, anti-viral drug discoveries are of great importance in combating the pandemic. Millets are known to contain numerous flavonoids with potential anti-viral properties. However, their anti-viral efficacy against SARS-CoV-2 is yet to be studied. The study uses the SARS-CoV-2 main protease (M<sup>pro</sup>) as the potential drug target and docks with eleven millet derived flavonoids taking HIV protease inhibiting drugs nelfinavir and saquinavir as control. AutoDock Vina was used for assessing the binding affinities and strength of binding of flavonoids present in millets with the target protein M<sup>pro</sup>. Further, the drug-likeness and pharmacokinetics properties of these flavonoids were analyzed using admetSAR. The ADMET analysis showed that isoorientin, orientin, vitexin, meletin, catechin, and myricetin possess potential mutagenic property while daidzein could have a negative effect on reproductive making these compounds as poor candidates for drug development against SARS-CoV-2. Based on the docking result and positive ADMET properties, the present study infers that apigenin may be considered as a potential inhibitor of SARS-CoV-2 M<sup>pro</sup> and may be further investigated to test its anti-viral activities using <i>in-vitro</i> and <i>in-vivo</i> study.


2020 ◽  
Author(s):  
Abhisek Mishra ◽  
Sobha Chnadra Rath ◽  
Iswar Baitharu ◽  
Bhawani Prasad Bag

The on-going pandemic COVID-19 has emerged as a major health threat across the globe. At present, anti-viral drug discoveries are of great importance in combating the pandemic. Millets are known to contain numerous flavonoids with potential anti-viral properties. However, their anti-viral efficacy against SARS-CoV-2 is yet to be studied. The study uses the SARS-CoV-2 main protease (M<sup>pro</sup>) as the potential drug target and docks with eleven millet derived flavonoids taking HIV protease inhibiting drugs nelfinavir and saquinavir as control. AutoDock Vina was used for assessing the binding affinities and strength of binding of flavonoids present in millets with the target protein M<sup>pro</sup>. Further, the drug-likeness and pharmacokinetics properties of these flavonoids were analyzed using admetSAR. The ADMET analysis showed that isoorientin, orientin, vitexin, meletin, catechin, and myricetin possess potential mutagenic property while daidzein could have a negative effect on reproductive making these compounds as poor candidates for drug development against SARS-CoV-2. Based on the docking result and positive ADMET properties, the present study infers that apigenin may be considered as a potential inhibitor of SARS-CoV-2 M<sup>pro</sup> and may be further investigated to test its anti-viral activities using <i>in-vitro</i> and <i>in-vivo</i> study.


2020 ◽  
Author(s):  
Abhisek Mishra ◽  
Sobha Chnadra Rath ◽  
Iswar Baitharu ◽  
Bhawani Prasad Bag

The on-going pandemic COVID-19 has emerged as a major health threat across the globe. At present, anti-viral drug discoveries are of great importance in combating the pandemic. Millets are known to contain numerous flavonoids with potential anti-viral properties. However, their anti-viral efficacy against SARS-CoV-2 is yet to be studied. The study uses the SARS-CoV-2 main protease (M<sup>pro</sup>) as the potential drug target and docks with eleven millet derived flavonoids taking HIV protease inhibiting drugs nelfinavir and saquinavir as control. AutoDock Vina was used for assessing the binding affinities and strength of binding of flavonoids present in millets with the target protein M<sup>pro</sup>. Further, the drug-likeness and pharmacokinetics properties of these flavonoids were analyzed using admetSAR. The ADMET analysis showed that isoorientin, orientin, vitexin, meletin, catechin, and myricetin possess potential mutagenic property while daidzein could have a negative effect on reproductive making these compounds as poor candidates for drug development against SARS-CoV-2. Based on the docking result and positive ADMET properties, the present study infers that apigenin may be considered as a potential inhibitor of SARS-CoV-2 M<sup>pro</sup> and may be further investigated to test its anti-viral activities using <i>in-vitro</i> and <i>in-vivo</i> study.


2021 ◽  
Vol 21 (4) ◽  
pp. 2075-2089
Author(s):  
Tiago da Silva Arouche ◽  
Anderson Yuri Martins ◽  
Teodorico de Castro Ramalho ◽  
Raul Nunes Carvalho Júnior ◽  
Fabio Luiz Paranhos Costa ◽  
...  

In the current pandemic situation raised due to COVID-19, drug reuse is emerging as the first line of treatment. The viral agent that causes this highly contagious disease and the acute respiratory syndrome coronavirus (SARS-CoV) share high nucleotide similarity. Therefore, it is structurally expected that many existing viral targets are similar to the first SARS-CoV, probably being inhibited by the same compounds. Here, we selected two viral proteins based on their vital role in the viral life cycle: Structure of the main protease SARS-CoV-2 and the structural base of the SARS-CoV-2 protease 3CL, both supporting the entry of the virus into the human host. The approved drugs used were azithromycin, ritonavir, lopinavir, oseltamivir, ivermectin and heparin, which are emerging as promising agents in the fight against COVID-19. Our hypothesis behind molecular coupling studies is to determine the binding affinities of these drugs and to identify the main amino acid residues that play a fundamental role in their mechanism of action. Additional studies on a wide range of FDA-approved drugs, including a few more protein targets, molecular dynamics studies, in vitro and biological in vivo evaluation are needed to identify combination therapy targeted at various stages of the viral life cycle. In our experiment in silico, based mainly on the molecular coupling approach, we investigated six different types of pharmacologically active drugs, aiming at their potential application alone or in combination with the reuse of drugs. The ligands showed stable conformations when analyzing the affinity energy in both proteases: ivermectin forming a stable complex with the two proteases with values −8.727 kcal/mol for Main Protease and −9.784 kcal/mol for protease 3CL, Heparin with values of −7.647 kcal/mol for the Main protease and −7.737 kcal/mol for the 3CL protease. Both conform to the catalytic site of the proteases. Our studies can provide an insight into the possible interactions between ligands and receptors, through better conformation. The ligands ivermectin, heparin and ritonavir showed stable conformations. Our in-silica docking data shows that the drugs we have identified can bind to the binding compartment of both proteases, this strongly supports our hypothesis that the development of a single antiviral agent targeting Main protease, or 3CL protease, or an agent used in combination with other potential therapies, it could provide an effective line of defense against diseases associated with coronaviruses.


2020 ◽  
Author(s):  
Liya Thurakkal ◽  
Satyam Singh ◽  
Sushabhan Sadhukhan ◽  
Mintu Porel

The emerging paradigm shift from ‘one molecule, one target, for one disease’ towards ‘multi-targeted small molecules’ has paved an ingenious pathway in drug discovery in recent years. This idea has been extracted for the investigation of competent drug molecules for the unprecedented COVID-19 pandemic which became the greatest global health crisis now. Perceiving the importance of organosulfur compounds against SARS-CoV-2 from the drugs under clinical trials, a class of organosulfur compounds effective against SARS-CoV were selected and studied the interaction with multiple proteins of the SARS-CoV-2. One compound displayed inhibition against five proteins (both structural and non-structural) of the virus namely, main protease, papain-like protease, spike protein, helicase and RNA dependent RNA polymerase. Consequently, this compound emanates as a potential candidate for treating the virulent disease. The pharmacokinetics, ADMET properties and target prediction studies carried out in this work further inflamed the versatility of the compound and urge to execute <i>in-vitro</i> and <i>in-vivo</i> analysis on SARS-CoV-2 in the future.<br>


2020 ◽  
Author(s):  
Maria Kuzikov ◽  
Elisa Costanzi ◽  
Jeanette Reinshagen ◽  
Francesca Esposito ◽  
Laura Vangeel ◽  
...  

Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, and have identified 62 additional compounds with IC50 values below 1 uM and profiled their selectivity towards Chymotrypsin and 3CL-Pro from the MERS virus. A subset of 8 inhibitors showed anti-cytopathic effect in a Vero-E6 cell line and the compounds thioguanosine and MG-132 were analysed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Angs., showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.


2018 ◽  
Vol 315 (5) ◽  
pp. C653-C663 ◽  
Author(s):  
Kasin Yadunandam Anandam ◽  
Omar A. Alwan ◽  
Veedamali S. Subramanian ◽  
Padmanabhan Srinivasan ◽  
Rubina Kapadia ◽  
...  

Riboflavin (RF), is essential for normal cellular metabolism/function. Intestinal RF absorption occurs via a specific carrier-mediated process that involves the apical transporter RFVT-3 ( SLC52A3) and the basolateral RFVT-1 (SLC52A1). Previously, we characterized different cellular/molecular aspects of the intestinal RF uptake process, but nothing is known about the effect of proinflammatory cytokines on the uptake event. We addressed this issue using in vitro, ex vivo, and in vivo models. First, we determined the level of mRNA expression of the human (h)RFVT-3 and hRFVT-1 in intestinal tissue of patients with inflammatory bowel disease (IBD) and observed a markedly lower level compared with controls. In the in vitro model, exposing Caco-2 cells to tumor necrosis factor-α (TNF-α) led to a significant inhibition in RF uptake, an effect that was abrogated upon knocking down TNF receptor 1 (TNFR1). The inhibition in RF uptake was associated with a significant reduction in the expression of hRFVT-3 and -1 protein and mRNA levels, as well as in the activity of the SLC52A3 and SLC52A1 promoters. The latter effects appear to involve Sp1 and NF-κB sites in these promoters. Similarly, exposure of mouse small intestinal enteroids and wild-type mice to TNF-α led to a significant inhibition in physiological and molecular parameters of intestinal RF uptake. Collectively, these findings demonstrate that exposure of intestinal epithelial cells to TNF-α leads to inhibition in RF uptake and that this effect is mediated, at least in part, via transcriptional mechanism(s). These findings may explain the significantly low RF levels observed in patients with IBD.


Brain ◽  
2019 ◽  
Vol 142 (12) ◽  
pp. 3852-3867 ◽  
Author(s):  
Philippa Pettingill ◽  
Greg A Weir ◽  
Tina Wei ◽  
Yukyee Wu ◽  
Grace Flower ◽  
...  

The two-pore potassium channel TRESK is a potential drug target in pain and migraine. Pettingill et al. show that the F139WfsX2 mutation causes TRESK loss of function and hyperexcitability in nociceptors derived from iPSCs of patients with migraine. Cloxyquin, a TRESK activator, reverses migraine-relevant phenotypes in vitro and in vivo.


2020 ◽  
Vol 7 ◽  
Author(s):  
Rounak Chourasia ◽  
Srichandan Padhi ◽  
Loreni Chiring Phukon ◽  
Md Minhajul Abedin ◽  
Sudhir P. Singh ◽  
...  

The COVID-19 pandemic caused by novel SARS-CoV-2 has resulted in an unprecedented loss of lives and economy around the world. In this study, search for potential inhibitors against two of the best characterized SARS-CoV-2 drug targets: S1 glycoprotein receptor-binding domain (RBD) and main protease (3CLPro), was carried out using the soy cheese peptides. A total of 1,420 peptides identified from the cheese peptidome produced using Lactobacillus delbrueckii WS4 were screened for antiviral activity by employing the web tools, AVPpred, and meta-iAVP. Molecular docking studies of the selected peptides revealed one potential peptide “KFVPKQPNMIL” that demonstrated strong affinity toward significant amino acid residues responsible for the host cell entry (RBD) and multiplication (3CLpro) of SARS-CoV-2. The peptide was also assessed for its ability to interact with the critical residues of S1 RBD and 3CLpro of other β-coronaviruses. High binding affinity was observed toward critical amino acids of both the targeted proteins in SARS-CoV, MERS-CoV, and HCoV-HKU1. The binding energy of KFVPKQPNMIL against RBD and 3CLpro of the four viruses ranged from −8.45 to −26.8 kcal/mol and −15.22 to −22.85 kcal/mol, respectively. The findings conclude that cheese, produced by using Lb. delbrueckii WS4, could be explored as a prophylactic food for SARS-CoV-2 and related viruses. In addition, the multi-target inhibitor peptide, which effectively inhibited both the viral proteins, could further be used as a terminus a quo for the in vitro and in vivo function against SARS-CoV-2.


2001 ◽  
Vol 45 (6) ◽  
pp. 1743-1745 ◽  
Author(s):  
Graham H. Coombs ◽  
Jeremy C. Mottram

ABSTRACT Methionine γ-lyase, the enzyme which catalyzes the single-step conversion of methionine to α-ketobutyrate, ammonia, and methanethiol, is highly active in many anaerobic pathogenic microorganisms but has no counterpart in mammals. This study tested the hypothesis that this pathogen-specific enzyme can be exploited as a drug target by prodrugs that are exclusively activated by it. Trifluoromethionine was confirmed as such a prodrug and shown to be highly toxic in vitro to the anaerobic protozoan parasiteTrichomonas vaginalis, to anaerobic bacteria containing methionine γ-lyase, and to Escherichia coli expressing the trichomonad gene. The compound also has exceptional activity against the parasite growing in vivo, with a single dose preventing lesion formation in five of the six mice challenged. These findings suggest that trifluoromethionine represents a lead compound for a novel class of anti-infective drugs with potential as chemotherapeutic agents against a range of prokaryotic and eukaryotic anaerobic pathogens.


Sign in / Sign up

Export Citation Format

Share Document