scholarly journals Community composition of coral associated Symbiodiniaceae is driven by fine scale environmental gradients

2021 ◽  
Author(s):  
Mariana Rocha de Souza ◽  
Carlo Caruso ◽  
Lupita Ruiz-Jones ◽  
Crawford Drury ◽  
Ruth D. Gates ◽  
...  

The survival of reef-building corals is dependent upon a symbiosis between the coral and the community of Symbiodiniaceae. Montipora capitata, one of the main reef building coral species in Hawaiʻi, is known to host a diversity of symbionts, but it remains unclear how they change spatially and whether environmental factors drive those changes. Here, we surveyed the Symbiodiniaceae community in 600 M. capitata colonies from 30 sites across Kāneʻohe Bay and tested for host specificity and environmental gradients driving spatial patterns of algal symbiont distribution. We found that the Symbiodiniaceae community differed markedly across sites, with M. capitata in the most open-ocean (northern) site hosting few or none of the genus Durusdinium, whereas individuals at other sites had a mix of Durusdinium and Cladocopium. Our study shows that the algal symbiont community composition responds to fine-scale differences in environmental gradients; depth and temperature variability were the most significant predictor of Symbiodiniaceae community, although environmental factors measured in the study explained only about 20% of observed variation. Identifying and mapping Symbiodiniaceae community distribution at multiple scales is an important step in advancing our understanding of algal symbiont diversity, distribution and evolution, and the potential responses of corals to future environmental change.

2017 ◽  
Vol 93 (10) ◽  
Author(s):  
Jie-Liang Liang ◽  
Xiao-Jing Li ◽  
Hao-Yue Shu ◽  
Pandeng Wang ◽  
Jia-Liang Kuang ◽  
...  

2014 ◽  
Vol 8 (8) ◽  
pp. 1715-1726 ◽  
Author(s):  
Gavin Lear ◽  
Julia Bellamy ◽  
Bradley S Case ◽  
Jack E Lee ◽  
Hannah L Buckley

2020 ◽  
Author(s):  
Amanda Williams ◽  
Eric N. Chiles ◽  
Dennis Conetta ◽  
Jananan S. Pathmanathan ◽  
Phillip A. Cleves ◽  
...  

SummaryCoral reef systems are under global threat due to warming and acidifying oceans1. Understanding the response of the coral holobiont to environmental change is crucial to aid conservation efforts. The most pressing problem is “coral bleaching”, usually precipitated by prolonged thermal stress that disrupts the algal symbiosis sustaining the holobiont2,3. We used metabolomics to understand how the coral holobiont metabolome responds to heat stress with the goal of identifying diagnostic markers prior to bleaching onset. We studied the heat tolerant Montipora capitata and heat sensitive Pocillopora acuta coral species from the Hawaiian reef system in Kāne’ohe Bay, O’ahu. Untargeted LC-MS analysis uncovered both known and novel metabolites that accumulate during heat stress. Among those showing the highest differential accumulation were a variety of co-regulated dipeptides present in both species. The structures of four of these compounds were determined (Arginine-Glutamine, Lysine-Glutamine, Arginine-Valine, and Arginine-Alanine). These dipeptides also showed differential accumulation in symbiotic and aposymbiotic (alga free) individuals of the sea anemone model Aiptasia4, suggesting their animal provenance and algal symbiont related function. Our results identify a suite of metabolites associated with thermal stress that can be used to diagnose coral health in wild samples.


2011 ◽  
Vol 68 (10) ◽  
pp. 1778-1789 ◽  
Author(s):  
Alison Mikulyuk ◽  
Sapna Sharma ◽  
Scott Van Egeren ◽  
Eric Erdmann ◽  
Michelle E. Nault ◽  
...  

Quantifying the relative role of environmental and spatial factors to understand patterns in community composition is a fundamental goal of community ecology. We applied a tested and repeatable point-intercept sampling method to aquatic macrophyte assemblages in 225 Wisconsin lakes to understand the ability of environmental, land-use, and spatial patterns to explain aquatic plant distribution and abundance. Using a variation partitioning framework in conjunction with Moran eigenvector maps we found that environmental, land-use, and spatial patterns explained 31% of total adjusted variation in aquatic macrophyte assemblages across the landscape. Environmental factors were the most important (contributing 34% of the total explained variation), but all sources of variation were statistically significant. Community composition varied from north to south along a gradient of alkalinity and from disturbed to undisturbed lakes, diverging according to whether disturbance was urban or agricultural. The large amount of shared variation among predictor variables suggests causal relationships are complex and emphasizes the importance of considering space and land-use in addition to environmental factors when characterizing macrophyte assemblages. This work is the first to examine the joint and unique effects of environment, land-use, and spatial patterns on aquatic plant communities.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10902
Author(s):  
Jialing Teng ◽  
Jing Tian ◽  
Guirui Yu ◽  
Yakov Kuzyakov

Spatial heterogeneity of soil bacterial community depends on scales. The fine-scale spatial heterogeneity of bacterial community composition and functions remains unknown. We analyzed the main driving factors of fine-scale spatial patterns of soil bacterial community composition and carbon metabolic functions across a 30 m × 40 m plot within a Korean pine forest by combining Illumina 16S rRNA sequencing with Biolog Ecoplates based on 53 soil samples. Clear spatial patterns in bacterial community composition and metabolic functions were observed in the forest soil. The bacterial community composition and metabolic functions both showed distance-decay of similarity within a distance of meters. Structural equation model analysis revealed that environmental variables and geographic distance together explained 37.9% and 63.1% of community and metabolic functions, respectively. Among all environmental factors, soil organic carbon (SOC) and root biomass emerged as the most important drivers of the bacterial community structure. In contrast, soil pH explained the largest variance in metabolic functions. Root biomass explained the second-largest variance in soil bacterial community composition, but root traits made no difference in metabolic functions variance. These results allow us to better understand the mechanisms controlling belowground diversity and plant-microbe interactions in forest ecosystems.


2020 ◽  
Author(s):  
Jenna Dilworth ◽  
Carlo Caruso ◽  
Valerie A. Kahkejian ◽  
Andrew C. Baker ◽  
Crawford Drury

AbstractAs sea surface temperatures increase worldwide due to climate change, coral bleaching events are becoming more frequent and severe, resulting in reef degradation. Leveraging the inherent ability of reef-building corals to acclimatize to thermal stress via pre-exposure to protective temperature treatments may become an important tool in improving the resilience of coral reefs to rapid environmental change. We investigated whether historical bleaching phenotype, coral host genotype, and exposure to protective temperature treatments would affect the response of the Hawaiian coral Montipora capitata to natural thermal stress. Fragments were collected from colonies that demonstrated different bleaching responses during the 2014-2015 event in Kāne’ohe Bay (O’ahu, Hawai’i) and exposed to four different artificial temperature pre-treatments (and a control at ambient temperature). After recovery, fragments experienced a natural thermal stress event either in laboratory conditions or their native reef environment. Response to thermal stress was quantified by measuring changes in the algal symbionts’ photochemical efficiency, community composition, and relative density. Historical bleaching phenotype was reflected in stable differences in symbiont community composition, with historically bleached corals containing only Cladocopium symbionts and historically non-bleached corals having mixed symbiont communities dominated by Durusdinium. Mixed-community corals lost more Cladocopium than Cladocopium-only corals during the natural thermal stress event, and preferentially recovered with Durusdinium. Laboratory pre-treatments exposed corals to more thermal stress than anticipated, causing photochemical damage that varied significantly by genotype. While none of the treatments had a protective effect, temperature variation during treatments had a significant detrimental effect on photochemical efficiency during the thermal stress event. These results show that acclimatization potential is affected by fine-scale differences in temperature regime, host genotype, and relatively stable differences in symbiont community composition that underpin historical bleaching phenotypes in M. capitata.


2021 ◽  
Author(s):  
Ann Kristin Schartau ◽  
Heather L. Mariash ◽  
Kirsten S. Christoffersen ◽  
Daniel Bogan ◽  
Olga P. Dubovskaya ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 855
Author(s):  
Mikołaj Kokociński ◽  
Dariusz Dziga ◽  
Adam Antosiak ◽  
Janne Soininen

Bacterioplankton community composition has become the center of research attention in recent years. Bacteria associated with toxic cyanobacteria blooms have attracted considerable interest. However, little is known about the environmental factors driving the bacteria community, including the impact of invasive cyanobacteria. Therefore, our aim has been to determine the relationships between heterotrophic bacteria and phytoplankton community composition across 24 Polish lakes with different contributions of cyanobacteria including the invasive species Raphidiopsis raciborskii. This analysis revealed that cyanobacteria were present in 16 lakes, while R. raciborskii occurred in 14 lakes. Our results show that bacteria communities differed between lakes dominated by cyanobacteria and lakes with minor contributions of cyanobacteria but did not differ between lakes with R. raciborskii and other lakes. Physical factors, including water and Secchi depth, were the major drivers of bacteria and phytoplankton community composition. However, in lakes dominated by cyanobacteria, bacterial community composition was also influenced by biotic factors such as the amount of R. raciborskii, chlorophyll-a and total phytoplankton biomass. Thus, our study provides novel evidence on the influence of environmental factors and R. raciborskii on lake bacteria communities.


Sign in / Sign up

Export Citation Format

Share Document