scholarly journals Genomic landscape of drug response reveals novel mediators of anthelmintic resistance

2021 ◽  
Author(s):  
Stephen R Doyle ◽  
Roz Laing ◽  
David Bartley ◽  
Alison Morrison ◽  
Nancy Holroyd ◽  
...  

Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking and combatting their spread. Here, we use a genetic cross in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies novel alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor, cky-1, in ivermectin resistance. This gene is within a locus under selection in ivermectin resistant populations worldwide; functional validation using knockout and gene expression experiments supports a role for cky-1 overexpression in ivermectin resistance. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode, and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 825
Author(s):  
Tao Wang ◽  
Robin Gasser

Parasitic nematodes impose a significant public health burden, and cause major economic losses to agriculture worldwide. Due to the widespread of anthelmintic resistance and lack of effective vaccines for most nematode species, there is an urgent need to discover novel therapeutic and vaccine targets, informed through an understanding of host–parasite interactions. Proteomics, underpinned by genomics, enables the global characterisation proteins expressed in a particular cell type, tissue and organism, and provides a key to insights at the host–parasite interface using advanced high-throughput mass spectrometry-based proteomic technologies. Here, we (i) review current mass-spectrometry-based proteomic methods, with an emphasis on a high-throughput ‘bottom-up’ approach; (ii) summarise recent progress in the proteomics of parasitic nematodes of animals, with a focus on molecules inferred to be involved in host–parasite interactions; and (iii) discuss future research directions that could enhance our knowledge and understanding of the molecular interplay between nematodes and host animals, in order to work toward new, improved methods for the treatment, diagnosis and control of nematodiases.


2016 ◽  
Vol 53 (2) ◽  
pp. 120-125 ◽  
Author(s):  
M. Urda Dolinská ◽  
A. Königová ◽  
M. Babják ◽  
M. Várady

SummaryGastrointestinal parasitic nematodes in sheep cause severe economic losses. Anthelmintics are the most commonly used drugs for prophylaxis and therapy against parasitic helminths. The problem of drug resistance has developed for all commercially available anthelmintics in several genera and classes of helminths. In vitro and in vivo tests are used to detect anthelmintic resistance. Two in vitro methods (larval migration inhibition test and micromotility test) for the detection of ivermectin (IVM) resistance were compared using IVM-resistant and IVM-susceptible isolates of Haemonchus contortus. The degree of resistance for each test was expressed as a resistance factor (RF). The micromotility test was more sensitive for quantitatively measuring the degree of resistance between susceptible and resistant isolates. The RFs for this test for IVM and eprinomectin ranged from 1.00 to 108.05 and from 3.87 to 32.32, respectively.


Author(s):  
Janneke Wit ◽  
Clayton Dilks ◽  
Erik Andersen

Anthelmintic drugs are the major line of defense against parasitic nematode infections, but the arsenal is limited and resistance threatens sustained efficacy of the available drugs. Discoveries of the modes of action of these drugs and mechanisms of resistance have predominantly come from studies of a related non-parasitic nematode species, Caenorhabditis elegans, and the parasitic nematode Haemonchus contortus. Here, we discuss how our understanding of anthelmintic resistance and modes of action came from the interplay of results from each of these species. We argue that this “cycle of discovery”, where results from one species inform the design of experiments in the other, can use the complementary strengths of both to understand anthelmintic modes of action and mechanisms of resistance.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Markéta Zajíčková ◽  
Lukáš Prchal ◽  
Martina Navrátilová ◽  
Nikola Vodvárková ◽  
Petra Matoušková ◽  
...  

AbstractHaemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H. contortus. The potential hepatotoxicity of SRT was tested in sheep, a common H. contortus host. In addition, the main metabolic pathways of SRT in H. contortus and the ovine liver were identified. While no effect of SRT on H. contortus egg hatching was observed, SRT was found to significantly decrease the viability of H. contortus adults in drug-sensitive and resistant strains, with its effect comparable to the commonly used anthelmintics levamisole and monepantel. Moreover, SRT in anthelmintically active concentrations showed no toxicity to the ovine liver. Biotransformation of SRT in H. contortus was weak, with most of the drug remaining unmetabolized. Production of the main metabolite hydroxy-SRT did not differ significantly between strains. Other minor metabolites such as SRT-O-glucoside, dihydroxy-SRT, and SRT-ketone were also identified in H. contorts adults. Compared to H. contortus, the ovine liver metabolized SRT more extensively, mainly via desmethylation and glucuronidation. In conclusion, the potency of SRT against H. contortus was proven, and it should be tested further toward possible repurposing.


Author(s):  
Janneke Wit ◽  
Clayton Dilks ◽  
Erik Andersen

Parasitic nematode infections impact human and animal health globally, especially in the developing world. Anthelmintic drugs are the major line of defense against these infections, but the arsenal is limited. Additionally, anthelmintic resistance is widespread in veterinary parasites and an emerging threat in human parasites. Discoveries of the mode of action of these drugs and mechanisms of resistance have predominantly come from studies of a related non-parasitic nematode species, Caenorhabditis elegans, and the parasitic nematode Haemonchus contortus. Here, we discuss recent progress understanding anthelmintic resistance using these two species and how that progress relates to laboratory and field-based studies of veterinary helminths. We present a powerful approach enabled by the strengths of both nematode species to understand mechanisms of resistance and modes of action of anthelmintic drugs.


2020 ◽  
Author(s):  
Seiya Nagae ◽  
Kazuki Sato ◽  
Tsutomu Tanabe ◽  
Koichi Hasegawa

Abstract BackgroundHow various host-parasite combinations have been established is an important question in evolutionary biology. We have previously described two nematode species, Rhigonema naylae and Travassosinema claudiae, which are parasites of the Xystodesmidae millipede Parafontaria laminata in Aichi Prefecture, Japan. Rhigonematoidea belongs to the infraorder Rhigonematomorpha and is phylogenetically close to the Ascaridomorpha, which includes the roundworm parasite in animals. Thelastomatoidea spp. belong to the infraorder Oxyuridomorpha, which comprises a wide variety of parasites in many vertebrates and invertebrates. These nematodes were isolated together with high prevalence; however, the phylogenetic, evolutionary, and ecological relationships between these two parasitic nematodes and between host-parasites are not well known.ResultsWe collected nine species (11 isolates) of Xystodesmidae millipede from seven different locations in Japan and found that all species were co-infected with the parasitic nematodes Rhigonematoidea spp. and Thelastomatoidea spp. Rhigonematoidea spp. is exclusively a millipede parasite, and combinations of parasitic nematode groups and host genera seem to be fixed, supporting the hypothesis of their co-speciation. Intriguingly, Thelastomatoidea spp. were isolated, and the host-parasite relationship was not clarified, clearly indicating the broad host range of these nematode groups. Although the infection prevalence and population of Rhigonematoidea spp. were higher than those of Thelastomatoidea spp., these parasites were not competitive. The population of Rhigonematoidea spp. was not negatively affected by co-infection with Thelastomatoidea spp.ConclusionsPhylogenetic analysis supported our hypothesis that, during the evolution of parasitic nematode diversity in millipedes, the Rhigonematoidea spp. first established relationships with millipedes and were followed by the Thelastomatoidea spp.. The ancestor of the latter nematode might have moved from other host arthropods such as cockroaches.


2017 ◽  
Author(s):  
Stephen R. Doyle ◽  
Roz Laing ◽  
David J. Bartley ◽  
Collette Britton ◽  
Umer Chaudhry ◽  
...  

AbstractThe parasitic nematode Haemonchus contortus is an economically and clinically important pathogen of small ruminants, and a model system for understanding the mechanisms and evolution of traits such as anthelmintic resistance. Anthelmintic resistance is widespread and is a major threat to the sustainability of livestock agriculture globally; however, little is known about the genome architecture and parameters such as recombination that will ultimately influence the rate at which resistance may evolve and spread. Here we performed a genetic cross between two divergent strains of H. contortus, and subsequently used whole-genome re-sequencing of a female worm and her brood to identify the distribution of genome-wide variation that characterises these strains. Using a novel bioinformatic approach to identify variants that segregate as expected in a pseudo-testcross, we characterised linkage groups and estimated genetic distances between markers to generate a chromosome-scale F1 genetic map composed of 1,618 SNPs. We exploited this map to reveal the recombination landscape, the first for any parasitic helminth species, demonstrating extensive variation in recombination rate within and between chromosomes. Analyses of these data also revealed the extent of polyandry, whereby at least eight males were found to have contributed to the genetic variation of the progeny analysed. Triploid offspring were also identified, which we hypothesise are the result of nondisjunction during female meiosis or polyspermy. These results expand our knowledge of the genetics of parasitic helminths and the unusual life-history of H. contortus, and will enable more precise characterisation of the evolution and inheritance of genetic traits such as anthelmintic resistance. This study also demonstrates the feasibility of whole-genome resequencing data to directly construct a genetic map in a single generation cross from a non-inbred non-model organism with a complex lifecycle.Author summaryRecombination is a key genetic process, responsible for the generation of novel genotypes and subsequent phenotypic variation as a result of crossing over between homologous chromosomes. Populations of strongylid nematodes, such as the gastrointestinal parasites that infect livestock and humans, are genetically very diverse, but little is known about patterns of recombination across the genome and how this may contribute to the genetics and evolution of these pathogens. In this study, we performed a genetic cross to quantify recombination in the barber’s pole worm, Haemonchus contortus, an important parasite of sheep and goats. The reproductive traits of this worm make standard genetic crosses challenging, but by generating whole-genome sequence data from a female worm and her offspring, we identified genetic variants that act as though they come from a single mating cross, allowing the use of standard statistical approaches to build a genetic map and explore the distribution and rates of recombination throughout the genome. A number of genetic signatures associated with H. contortus life history traits were revealed in this analysis: we extend our understanding of multiple paternity (polyandry) in this species, and provide evidence and explanation for sporadic increases in chromosome complements (polyploidy) among the progeny. The resulting genetic map will aid in population genomic studies in general and enhance ongoing efforts to understand the genetic basis of resistance to the drugs used to control these worms, as well as for related species that infect humans throughout the world.


2017 ◽  
Author(s):  
Mostafa Zamanian ◽  
Daniel E. Cook ◽  
Stefan Zdraljevic ◽  
Shannon C. Brady ◽  
Daehan Lee ◽  
...  

Parasitic nematodes impose a debilitating health and economic burden across much of the world. Nematode resistance to anthelmintic drugs threatens parasite control efforts in both human and veterinary medicine. Despite this threat, the genetic landscape of potential resistance mechanisms to these critical drugs remains largely unexplored. Here, we exploit natural variation in the model nematodes Caenorhabditis elegans and Caenorhabditis briggsae to discover quantitative trait loci (QTL) that control sensitivity to benzimidazoles widely used in human and animal medicine. High-throughput phenotyping of albendazole, fenbendazole, mebendazole, and thiabendazole responses in panels of recombinant lines led to the discovery of over 15 QTL in C. elegans and four QTL in C. briggsae associated with divergent responses to these anthelmintics. Many of these QTL are conserved across benzimidazole derivatives, but others show drug and dose specificity. We used near-isogenic lines to recapitulate and narrow the C. elegans albendazole QTL of largest effect and identified candidate variants correlated with the resistance phenotype. These QTL do not overlap with known benzimidazole resistance genes from parasitic nematodes and present specific new leads for the discovery of novel mechanisms of nematode benzimidazole resistance. Analyses of orthologous genes reveal significant conservation of candidate benzimidazole resistance genes in medically important parasitic nematodes. These data provide a basis for extending these approaches to other anthelmintic drug classes and a pathway towards validating new markers for anthelmintic resistance that can be deployed to improve parasite disease control.Author SummaryThe treatment of roundworm (nematode) infections in both humans and animals relies on a small number of anti-parasitic drugs. Resistance to these drugs has appeared in veterinary parasite populations and is a growing concern in human medicine. A better understanding of the genetic basis for parasite drug resistance can be used to help maintain the effectiveness of anti-parasitic drugs and to slow or to prevent the spread of drug resistance in parasite populations. This goal is hampered by the experimental intractability of nematode parasites. Here, we use non-parasitic model nematodes to systematically explore responses to the critical benzimidazole class of anti-parasitic compounds. Using a quantitative genetics approach, we discovered unique genomic intervals that control drug effects, and we identified differences in the genetic architectures of drug responses across compounds and doses. We were able to narrow a major-effect genomic region associated with albendazole resistance and to establish that candidate genes discovered in our genetic mappings are largely conserved in important human and animal parasites. This work provides new leads for understanding parasite drug resistance and contributes a powerful template that can be extended to other anti-parasitic drug classes.


2021 ◽  
Author(s):  
Kathryn S. Evans ◽  
Janneke Wit ◽  
Lewis Stevens ◽  
Steffen R. Hahnel ◽  
Briana Rodriguez ◽  
...  

AbstractParasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.Author SummaryParasitic nematodes infect plants, animals, and humans, causing major health and economic burdens worldwide. Parasitic nematode infections are generally treated efficiently with a class of drugs named anthelmintics. However, resistance to many of these anthelmintic drugs, including macrocyclic lactones (MLs), is rampant and increasing. Therefore, it is essential that we understand how these drugs act against parasitic nematodes and, conversely, how nematodes gain resistance in order to better treat these infections in the future. Here, we used the non-parasitic nematode Caenorhabditis elegans as a model organism to study ML resistance. We leveraged natural genetic variation between strains of C. elegans with differential responses to abamectin to identify three genomic regions on chromosome V, each containing one or more genes that contribute to ML resistance. Two of these loci have not been previously discovered and likely represent novel resistance mechanisms. We also compared the genes in these two novel loci to the genes found within genomic regions linked to ML resistance in the parasite Haemonchus contortus and found several cases of overlap between the two species. Overall, this study highlights the advantages of using C. elegans to understand anthelmintic resistance in parasitic nematodes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Louise E. Atkinson ◽  
Ciaran J. McCoy ◽  
Bethany A. Crooks ◽  
Fiona M. McKay ◽  
Paul McVeigh ◽  
...  

Nematode parasites undermine human health and global food security. The frontline anthelmintic portfolio used to treat parasitic nematodes is threatened by the escalation of anthelmintic resistance, resulting in a demand for new drug targets for parasite control. Nematode neuropeptide signalling pathways represent an attractive source of novel drug targets which currently remain unexploited. The complexity of the nematode neuropeptidergic system challenges the discovery of new targets for parasite control, however recent advances in parasite ‘omics’ offers an opportunity for the in silico identification and prioritization of targets to seed anthelmintic discovery pipelines. In this study we employed Hidden Markov Model-based searches to identify ~1059 Caenorhabditis elegans neuropeptide G-protein coupled receptor (Ce-NP-GPCR) encoding gene homologs in the predicted protein datasets of 10 key parasitic nematodes that span several phylogenetic clades and lifestyles. We show that, whilst parasitic nematodes possess a reduced complement of Ce-NP-GPCRs, several receptors are broadly conserved across nematode species. To prioritize the most appealing parasitic nematode NP-GPCR anthelmintic targets, we developed a novel in silico nematode parasite drug target prioritization pipeline that incorporates pan-phylum NP-GPCR conservation, C. elegans-derived reverse genetics phenotype, and parasite life-stage specific expression datasets. Several NP-GPCRs emerge as the most attractive anthelmintic targets for broad spectrum nematode parasite control. Our analyses have also identified the most appropriate targets for species- and life stage- directed chemotherapies; in this context we have identified several NP-GPCRs with macrofilaricidal potential. These data focus functional validation efforts towards the most appealing NP-GPCR targets and, in addition, the prioritization strategy employed here provides a blueprint for parasitic nematode target selection beyond NP-GPCRs.


Sign in / Sign up

Export Citation Format

Share Document